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ABSTRACT

We introduce a new approach for pitch spelling from
MIDI data based on a probabilistic model. The model
uses a hidden sequence of variables, one for each mea-
sure, describing the local key of the music. The spellings
in the voices evolve as conditionally independent Markov
chains, given the hidden keys. The model represents both
vertical relations through the shared key and horizontal
voice-leading relations through the explicit Markov mod-
els for the voices. This conditionally independent voice
model leads to an efficient dynamic programming algo-
rithm for finding the most likely configuration of hid-
den variables — spellings and harmonic sequence. The
model is also straightforward to train from unlabeled data,
though we have not been able to demonstrate any im-
provement in performance due to training. Our results
compare favorably with others when tested on Meredith’s
corpus, designed specifically for this problem.

1 INTRODUCTION

We consider here the problem of pitch spelling from MIDI,
as has been addressed by several others, including Mered-
ith, [1], [2], Cambouropoulos [3], [4], Chew and Chen,
[5], Longuet-Higgins [6], and our previous work [7]. The
goal here is to provide the pitch spellings (is it F] or G[?)
necessary to notate common practice music using a data
source, such as MIDI, that does not distinguish between
alternate spellings. The most immediate use for such an
algorithm is to produce more readable music scores from
MIDI data — at present, the pitch spellings from the com-
mercial music notation programs we know of leave much
to be desired. But pitch spelling will also be a part of the
inevitable migration from MIDI, which, at present, consti-
tutes the lion’s share of symbolically represented music,
to more expressive symbolic representations. While, per-
haps, not as deep a problem as harmonic analysis, pitch
spelling is the most obvious observable attribute of har-
mony — thus pitch spelling provides a means to quantify
the accuracy of a harmonic analysis in objective terms.

We introduce a model that uses the notion of condition-
ally independent voices. That is, we model the musical
voices as conditionally independent sequences, while de-
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pending on a common collection of key variables. More
explicitly, we model the influence of harmony by a hidden
Markov chain of local keys, one for each measure. Given
the keys, the evolution of each voice in each measure oc-
curs independently of the others, but is dependent on the
key sequence. The voices are also modeled as Markov
Chains. Thus we allow for interaction between the voices
while clearly articulating the way in which this interaction
occurs.

Our model assumes that there are two primary issues
that explain pitch spellings: voice leading and local har-
mony. These two sources of information are articulated in
the music theory text [8]. One principle therein suggests
using accidentals to show the direction of chromatic pass-
ing tones, thus capturing the “yearning” ascribed to acci-
dentals in informal discussions by musicians. (This same
notion is also discussed by the Russian composer Nikolai
Rimsky-Korsakov in [9].) Another principle from [8] ad-
vises avoiding “remote” accidentals; thus B[ is preferred
to A] in C major, since the former is in the scale of the F
major, which is near to C. This principle is captured by the
key conditional nature of our model, with its implicit no-
tion of the likelihood of various pitches in different keys.
Of course, there are times when these two principles come
into conflict with each other, as in the spelling of chro-
matic scales. While notational conventions prescribe solu-
tions here, and in other cases, our model can only explain
the spelling in terms of local key and voice leading.

The most obvious distinction between our approach and
the others mentioned is our formulation in terms of a gen-
erative probabilistic model. Within this context, we be-
lieve that the merits of various pitch spellings can best be
weighed within the context of a hidden key, so we ex-
plicitly model key and simultaneously estimate this key
sequence along with spelling. Furthermore, we clearly
articulate our objective as the globally most likely con-
figuration. All of the algorithms cited use some notion
of “pitch closeness” in choosing spellings, as in Temper-
ley’s line of fifths and Chew’s spiral array, though, in our
case, this notion of closeness is in terms of the hidden key
variable. These algorithms differ in their incorporation
of voice leading. Temperley and Sleater, Meredith, and,
to some extent Longuet-Higgins use voice leading, while
Cambouropoulos, and Chew and Chen do not.

Our approach is computationally efficient while captur-
ing both notions of horizontal and, to some extent, vertical
interaction between voices. Our model is automatically
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Figure 1. The hidden variables of the model, in open
circles, are the Markov chain corresponding to the key
sequence, along with conditionally independent Markov
chains for each voice. The observable variable are the
MIDI pitch classes denoted by solid circles. The key vari-
ables are directly related to each variable within the same
measure, though we do not draw this in our figure for the
sake of clarity.

trainable from unlabeled data, though it is unclear if EM-
type training is appropriate for our situation, as discussed
in a later section. We present results on the database col-
lected by Dave Meredith as a testbed for several differ-
ent pitch spelling algorithms, presented at ISMIR 05 [10].
Our overall error is lower than the best presented in [10],
Meredith’s ps1303 algorithm, by a factor of more than 3,
though the results vary between composers.

2 MOTIVATION OF OUR MODEL

We assume we are given a partition of our piece into a col-
lection of V voices. This partition will be obvious in the
case of vocal music or monophonic instrumental music in
which each part will be associated with a voice. How-
ever, the notion of voice is often meaningful in keyboard
and other musical domains as well. Several efforts in the
ISMIR community, [11], [12], [13], as well as our own,
have addressed automatic voicing of music that does not
contain explicit parts. Both [11], [13], have found this
problem to be readily solvable by dynamic-programming-
type algorithms seeking a partition that minimizes a cost
function. We doubt that the results of the pitch-spelling
algorithm discussed here are particularly sensitive to the
way in which the data is voiced when the notion of voice
is suspect.

We view our data as a collection of notes whose
only pitch attributes we consider are the pitch classes,
{0, . . . , 11}, where the classes represent the remainder
when the MIDI pitch is divided by 12. For instance C
and B] would be represented by class 0, etc. We notate the
pitch classes of the notes as {omvi}, where m = 1, . . . , M
indexes the measures of the piece, v = 1, . . . , V indexes
the voices, and i = 1, . . . , I = I(m, v) indexes the notes
within the mth measure of the vth voice. While, of course,
the number of notes in a particular voice and measure will
be variable, for the sake of clarity we will suppress this de-
pendence in our notation and simply write I for I(m, v).

While the {omvi} are the observable variables corre-
sponding to our musical surface, we explain each variable

as the result of two hidden variables, Km and Smvi. Here
Km is the local key of the piece — 12 possible tonics with
a mode of either major or minor — and Smvi is the solfege
variable describing the scale degree with possible modifi-
cations. Km and Smvi are connected, since the domain of
Smvi depends on the key Km. Explicitly, we have

Smvi ∈ {rest, 1̂, . . . , 7̂, ]1̂, ]2̂, ]4̂, ]5̂, ]6̂, [2̂, [3̂, [5̂, [6̂, [7̂}
(1)

for the major mode and

Smvi ∈ {rest, 1̂, . . . , 7̂, ]6̂, ]7̂, ]1̂, ]3̂, ]4̂, [2̂, [4̂, [5̂} (2)

for the minor mode, in which the above notation of scale
degrees is relative to natural minor — 6̂ and 7̂ refer to
the sixth and seventh scale degrees of the natural minor
scale, while ]6̂ and ]7̂ refer to the sixth and seventh scale
degrees of the melodic minor scale. We assume that Km

and Smvi determine the pitch class, which we denote as
o(k, s), in the straightforward way. For instance, Km = C
major, Smvi = ]4̂ together imply pitch class 6 (omvi = 6),
while Km = E minor, Smvi = ]6̂ say omvi = 1. That is,
o(C major, ]4̂) = 6 and o(E minor, ]6̂) = 1.

The two different versions of some solfege variables,
such as [3̂ and ]2̂, are used to distinguish between the
spellings of the note — our eventual goal. Notationally
speaking, any solfege variable with a sharp (flat) must be
spelled by raising (lowering) the corresponding scale tone.
For instance, if ]4̂ appears in the key of C minor, whose
scale degree 4̂ is F, then the note would be spelled as F].
Notationally, the ] accidental would be used only if it is
necessary to “trump” the key signature, which may dif-
fer from that of the local key of the passage. Similarly,
if ]2̂ appears in E major, whose scale degree 2̂ is F], the
note would be spelled as F double sharp. Notationally,
this would always appear with the double sharp symbol
unless the key signature actually had a double sharp. We
hope to never see this latter situation!

While the observable pitch classes, o, depend deter-
ministically on the K and S variables, the modeling of
K and S is more interesting. Naturally, inspection of ac-
tual music data would uncover both vertical and horizon-
tal dependence among the S variables. A relatively sim-
ple model would ignore horizontal dependence and treat,
for a fixed measure m, the {Smvi} as a random sample
from some distribution depending on the mode of Km,
b(Km). This distribution might give the highest proba-
bility to tonic triad notes, the second highest probability
to the remaining scale notes, and the lowest probability to
non-scale tones. Such modeling must take into account
the mode of the key, since different non-scale tones exist
for the two modes as in eqs 1, 2. We have described these
key-conditional random sample models as “bag of notes”
models in earlier work [14], and used them for harmonic
analysis to reasonably good effect. A bag of notes model
can be used for note-spelling, as in [7], by spelling each
note using the local key and perhaps other variables —
e.g. in D major, pitch class 6 will be spelled as F] rather
than G[. However, such a model ignores the voice leading



tendencies, which describe horizontal motion — often an
important issue in determining correct pitch spellings (e.g.
]5̂ often moves to 6̂).

In this work we capture the harmonic nature of pitch
spelling by modeling a sequence of hidden keys, one for
each measure, as a Markov chain and allowing the voices
to depend on this key. To capture the voice leading ten-
dencies, we model each voice as a Markov chain whose
transition probabilities capture voice leading patterns. The
voices are assumed to be conditionally independent, given
the key sequence, K = k, thereby assuming that all inter-
action between the voices is accounted for by K. This
assumption allows us to partially decouple the voices dur-
ing our computations.

As with all models, our assumptions oversimplify the
true state of affairs; however, we do manage to capture
what we expect to be the most important considerations.
For instance, the Markov chain K attempts to estimate the
time-varying key, which is usually the most important el-
ement for pitch spelling — other considerations aside, in
D major F] is preferred to G[. However, the model is also
able to capture the “inertia” of the accidental spellings,
which have a strong tendency to resolve in the direction
of their accidentals. Furthermore, key and spelling enjoy a
kind of symbiosis which, we believe, enables each to help
clarify the other. While the effect of key on spelling is
rather obvious and has already been mentioned, spelling
tendencies can help influence the choice of key. For in-
stance, an alternation between pitch classes 6 and 7 in
a measure may argue against the key of C major using
“bag of notes” reasoning since both F] and G[ are un-
likely in C major. However, when seen as ]4̂ resolving
to 5̂, a relatively common occurrence, C major becomes a
much more reasonable hypothesis. Our approach capital-
izes on this interplay between key and spelling by doing
simultaneous recognition of both attributes.

2.1 The Model

A directed acyclic graph representation of our modeling
assumptions is given in Figure 1, which shows a Markov
chain for the key variables on top — one for each mea-
sure. The key variables influence every variable in the
same measure, though these dependencies are not drawn
in the graph for the sake of clarity. Once the key sequence
is fixed, each voice evolves independently from the other
voices as a Markov chain, but still depending on the key
sequence. Thus the voices interact, but only through the
key. Both key and solfege variable together determine
the observable MIDI pitch classes, which we denote with
solid circles.

Using the principles articulated so far, as well as a
couple of others to be discussed, the joint distribution on

K, S, and O, p(k, s, o), can be factored as follows.

p(k, s, o) = p(k1)
M−1
∏

m=1

p(km+1|km) (3)

×

V
∏

v=1

p(smv1|km−1, sm−1vI , km) (4)

×δo(km,smv1)(omv1) (5)

×

I
∏

i=2

p(smvi|km, smvi−1) (6)

×

I
∏

i=2

δo(km,smvi)(omvi) (7)

where

δo(k,s)(o) =

{

1 o(k, s) = o
0 otherwise

Note the “nesting” of the products in these equations. The
basic structure of Eqns. 3-7 is simply the result of the
assumptions that the key variables are a Markov chain
and that the voices are conditionally independent given
the key sequence. Additionally we assume that the first
solfege variable in a voice, smv1 depends only on the two
nearest key variables, km, km−1, as well as its predeces-
sor, sm−1vI . Similarly, we assume that within a measure
(i > 1) a solfege variable depends only on the current key,
km, and its predecessor solfege variable, smvi−1.

These assumptions are further specialized in the fol-
lowing, in which we write k = (t, b), where t is the tonic
(∈ {0, . . . , 11}) and b the mode (major/minor) of the key.
First the “within” measure transitions are modeled by

p(smvi+1|smvi, km) = pS(smvi+1|smvi, bm) (8)

where the latter member pS(s′|s, b) depends on the previ-
ous solfege variable and the current mode. In addition, we
further refine Eqn. 4 to:

p(smv1|sm−1vI , km−1, km)

=























p0(smv1|bm) voice v empty
in meas m − 1

pT (smv1|sm−1vI , km−1, km) km−1 6= km

pS(smv1|sm−1vI , bm) otherwise

Thus, there are three situations. When there is no obvi-
ous information regarding voice leading, as when a voice
begins from scratch, we choose the first note of the voice
from the distribution p0(s|b), which depends only on the
mode of the key of the measure. When we have a key
change, we use the transition probability, pT , which can
be quite simply parameterized, though we omit the de-
tails. Otherwise we do have useful voice leading infor-
mation and follow the same assumptions of Eqn. 8 using
pS(s′|s, b).

The key transition probabilities can also be simplified
by forcing the translation invariant nature of key transi-



tions.

p(km+1|km) = p(tm+1, bm+1|tm, bm)

= p(bm+1|tm, bm)p(tm+1|bm+1, tm, bm)

= pB(bm+1|bm)pT (tm+1 − tm|bm+1, bm)

where tm+1 − tm is taken modulo 12. Here pB(b′|b)
describes the probability distribution for mode transi-
tions, obviously favoring staying in the current mode.
Also pT (∆t|b, b′) gives the probability of the relative dif-
ference in tonic, conditioned on the previous and next
mode. Of course when the two modes are equal, as the
most often will be, we will favor ∆t = 0 — the key stays
the same. Presumably, the probability of ∆t = 0 will be
less when the mode changes, though it may still be rel-
atively high to capture the relative familiarity of moving
between a major key and its parallel minor.

3 COMPUTING THE MOST LIKELY
CONFIGURATION

In this section we exploit the conditional independence of
the voices to find the most likely configuration of the hid-
den key and solfege variables, given the pitch class obser-
vations. The essential idea is the same as in the computa-
tion of the most likely configuration of a Bayesian belief
network — we find a groups of hidden variables that “sep-
arate” the past and the future variables. Thus the proba-
bilities of the various “paths” to such a group can be com-
pared without consideration of future evolution. While
presented for the sake of “full disclosure” and complete-
ness, this section can be skipped without loss of continu-
ity.

For each measure m = 1, . . . , M , we define the vector
Xm to be composed of Km as well as all Smvi variables
(the hidden variables). Similarly, we define the vector om

to be the collection of all pitch class observations omvi in
measure m. In addition we partition the hidden variables,
Xm, as

Ym = (Km, Sm1I , . . . , SmV I)

Zm = the remaining Smvi variables in Xm

so that the disjoint Ym and Zm together compose Xm.
Figure 1 shades the Ym variables for each depicted mea-
sure . Our algorithm finds the most likely hidden configu-
ration by recursively computing the function

p∗(ym) = max
x1,...,xm−1,zm

p(x1, . . . , xm−1, ym, zm, o1, . . . , om)

= max
x1,...,xm−1,zm

p(x1, . . . , xm, o1, . . . , om)

using the essential ideas from dynamic programming.
Each ym configuration separates the “past” from the “fu-
ture” in our model. That is, any path connecting variables
on either side of ym must contain a ym variable. Exploit-
ing such separations is always the core idea of dynamic
programming.

To begin, we note that

p∗(y1) = max
z1

p(x1)p(o1|x1)

= max
s111 . . . s11I−1

s121 . . . s12I−1

...
. . .

...
s1V 1 . . . s1V I−1

p(k1)
∏V

v=1 p(s1v1 . . . s1vI |k1)
∏I

i=1 p(o1vi|k1, s1vi)

= p(k1)

V
∏

v=1

max
s1v1 ...s1vI−1

p(s1v1 . . . s1vI |k1)
∏I

i=1 p(o1vi|k1, s1vi)

= p(k1)
V
∏

v=1

q∗1vI (s1vI |k1)

where we define

q∗1vi(s1vi|k1) = max
s1v1 ...s1vi−1

p(s1v1 . . . s1vi|k1)
∏i

j=1 p(o1vj |k1, s1vj)

for i = 1, . . . , I . We can compute q∗1vi recursively using
the usual dynamic program argument:

q∗1v1(s1v1|k1) = p(s1v1|k1)p(o1v1|k1, s1v1)

and

q∗1vi+1(s1vi+1|k1) = max
s1v1 ...s1vi

p(s1v1 . . . s1vi+1|k1)
∏i+1

j=1 p(o1vj |k1, s1vj)

= max
s1vi

p(s1vi+1|s1vi, k1)
p(o1vi+1|k1, s1vi+1)

× max
s1v1 ...s1vi−1

p(s1v1 . . . , s1vi|k1)
∏i

j=1 p(o1vj |k1, s1vj)

= max
s1vi

p(s1vi+1|s1vi, k1)
p(o1vi+1|k1, s1vi+1)
q∗1vi(s1vi)

Having computed p∗(y1) we can compute the general
p∗(ym) recursively as well.

p∗(ym) = max
x1,...,xm−1,zm

p(x1 . . . , xm)
∏m

µ=1 p(oµ|xµ)

= max
x1...,xm−2,zm−1,ym−1,zm

p(x1 . . . xm−1)
∏m−1

µ=1 p(oµ|xµ)

p(xm|ym−1)
p(om|xm)

= max
ym−1

p∗(ym−1) max
zm

p(xm|ym−1)p(om|xm)

= max
ym−1

p∗(ym−1)q
∗

m(ym|ym−1) (9)

where

q∗m(ym|ym−1) = max
zm

p(xm|ym−1)p(om|xm)



Then q∗m can be computed in terms of factors that depend
only on the individual voices by

q∗m ( ym|ym−1)

= max
zm

p(xm|ym−1)p(om|xm)

= max
sm11 . . . sm1I−1

sm21 . . . sm2I−1

...
. . .

...
smV 1 . . . smV I−1

p(km|km−1)
∏V

v=1 p(smv1 . . . , smvI |
km−1, km, sm−1vI)
∏I

i=1 p(omvi|km, smvi)

= p(km|km−1)

V
∏

v=1

q∗mvI(smvI |km, km−1sm−1vI)

where

q∗mvi(smvi|km, km−1sm−1vI)

= maxsmv1...smvI−1

p(smv1 . . . , smvI |km−1, km, sm−1vI )
∏i

j=1 p(omvj |km, smvj)

q∗mvi can also be computed recursively with only minor
revision of the derivation of q∗1vi, though we have omit-
ted the long but straightforward calculation for the sake of
brevity.

Once the recursions have been computed to the end of
the piece, we have p∗(yM ) for all configurations of yM .
If we define ŷM = arg maxyM

y∗(yM ), then from eqn. 9
we see that p∗( ˆyM ) is the probability of the globally max-
imizing configuration of hidden variables. It is a simple
matter to “undo” our calculations to identify this global
maximizer. We do this by substituting argmax for max
in eqn. 9:

ŷm−1 = arg max
ym−1

p∗(ym−1)q
∗

m(ŷm|ym−1)

for m = M − 1 . . . , 2. Having found the optimal con-
figuration for each of the Ym variables, we can undo the
q∗mvi calculations to fill in the missing values of the Zm

variables.

4 TRAINING AND EXPERIMENTS

Since our model is a Bayesian belief network, we can
train the models parameters using the usual junction tree
and message passing paradigms. However, we found it
simpler to adopt the familiar forward-backward (Baum-
Welch) training algorithm to this particular case. Hav-
ing implemented the training in this way, we were dis-
appointed to see a slight degradation in our results when
compared to hand-set parameters. However, this is not
really surprising. Baum-Welch training is an example of
the EM algorithm which seeks to maximize the marginal
likelihood of the observed data, having integrated out over
all unobserved variables. As many researchers have ob-
served, this is not the criterion we are really interested in
optimizing; we would prefer to minimize the number of

Figure 2. The error rates of the algorithms grouped by
composer.

Composer Error Rate
Corelli 0.081
Vivaldi 0.265
Telemann 0.053
Handel 0.024
Bach 0.102
Haydn 0.449
Mozart 0.322
Beethoven 0.102
Total 0.175

Table 1. Percentage Error rate for CIV algorithm

errors on a training set. Especially with error rates as low
as they are in this domain, it is not reasonable to expect an
increase in performance using a model trained by EM. In
essence, training gets “credit” for making more likely cer-
tain configurations that are already correctly recognized.
With already low error rates, these already correct config-
urations may well dominate the learning process.

Meredith [10] compares the success rate of several
pitch spelling algorithms. We have used the exact same
corpus as [10] to judge the performance of our algorithm.
Meredith’s corpus contains 216 pieces by eight different
composers, composed between the years 1680-1810. A
key feature of this corpus is that it has the same number of
notes for each composer, thus the number of movements
or pieces per composer differs.

We compare the performance of our Conditionally In-
dependent Voices (CIV) algorithm with the other algo-
rithms from [10] using error rate as our criterion — that is,
the number of misspelled notes divided by the number of
total notes. We have used the overall error rate, as well as
the error rate for each composer, to facilitate comparisons.

Meredith[10] reimplemented the algorithms as de-
scribed by their authors. In this process, several versions
of each algorithm were produced, considering from these
the version giving the best performance on the test set. To



a small extent, this process tunes the algorithms on the test
data, though we still expect the reported performance will
generalize to other similar test data. In all cases the num-
ber of tuned parameters was quite small, making overfit-
ting of the rather large data highly unlikely. The error
rates we present for the algorithms of [10] are taken di-
rectly from this source.

As it may be noted from Figure 3, the CIV algo-
rithm compares favorably with the other algorithms of
[10] when aggregated over the entire corpus, as well as
having the best result on 5 of the 8 composers. The precise
errors for the algorithm are given in Table 1 by composer.

In these experiments, the parameters of our model were
tuned by hand using a subset of the corpus which acted as
our “training data”, and included all of the Beethoven cor-
pus (5 symphony movements), about a third of the Haydn
corpus (5 string quartet movements), and another third of
the Mozart corpus (one concerto movement). While it is
not methodologically ideal to tune parameters on the test
data, we had no choice but to do that, as we did not have
other pitch spelled data, and needed to test on the entire
corpus to compare our results with [10]. In our case, as
with [10], the number of parameters was very small in
comparison to the size of the test set. Thus we believe that
our results will generalize to similar data as well as those
of [10], making the comparisons valid.

Our algorithm has trouble correctly spelling a few har-
monic situations such as: Ge+6 → Cadential 6/4 in major,
viio7/V → Cadential 6/4 in major, secondary dominants
and secondary leading tone chords in general, and also
delayed resolution (G] → B → A instead of G] → A).
We were expecting such errors since the premises of our
model oversimplify the true state of affairs somewhat. As
this last example shows, the resolution of a note may not
always be the following note in the voice, thus thwarting
our model, which only has “one-step” memory of pitch.
Other situations require a deeper notion of the harmonic
state than provided by the local key, as in the German
augmented sixth chord, which seems nearly impossible to
spell correctly without recognizing it as such. It seems,
however, that simple voice leading tendencies often give
the same result as a deeper harmonic analysis, thus ex-
plaining the success of our model. Finally, we anticipate
that our algorithm might have problems with chordal fig-
urations (arpeggiated chords) in which several voices are
represented in a single voice. This might be fixed by pre-
processing the data with an algorithm that would turn the
figuration into voices. (We found this to be an aggravating
tendency of our own voice recognition algorithm, which
may well be an asset here!) It is worth noting that the
Meredith test corpus contains almost no figurations.
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