
An Introduction to R

To get R:

1. Download R (it’s free) from the website http://cran.r-project.org There are versions for Linux, Windows and Mac.

2. Tutorials for R at http://cran.r-project.org/doc/manuals

R can be used as a calculator:

Try typing the following expressions at the command line (followed by return): (> is the command prompt).

> 5+3

> 10*10

> log(9.4)

> exp(exp(exp(20))) # R is only human! (anything following ’#’ is a comment)

R has most any mathematical function you can think of such as sqrt(), sin() ... mostly with easily guessable names.
Expressions using the logical operators ==, !=, <, > give Boolean values (T,F)

> 4 > 3 # this evaluates to T (true)

> 1 == exp(0) # so does this

> 1 != exp(0) # this evaluates to F (false)

It is possible to have variables that hold values in your program. Most strings beginning with an alphabet character will be
treated as variables. Try typing the following lines in succession

> x = 3 # set x to 3

> y = x*x+x

> y # print the value of y

Vectors

One of the nicest aspects of R is the way it handles vectors. Here are a several ways to create vectors:

> x = 1:100 # x is now the vector (1,2,...,100)

> y = seq(-pi,pi,length=100) # y consists of 100 evenly spaced values from -pi to pi

> z = c(1,4,8,20) # z is the vector (1,4,8,20)

> a = x+y # vectors of same length can be added, multiplied, etc.

> b = 4*x # this is interpreted correctly too

Random Number Generation

R has lots of built-in functions for doing things with random numbers. For instance

> x = runif(100) # creates a vector of 100 (uniformly distributed) random numbers between 0 and 1.

> punif(v) # is the probability that a Unif(0,1) rand number is less than v

> qunif(u) # gives the uth quantile of a Unif(0,1). More on this later.

There are similar functions for a variety of other distributions including the normal(0,1) (rnorm,pnorm,qnorm) Cauchy
(rcauchy, pcauchy, qcauchy), Exponential, Binomial, Poisson, and others.

Subsets

> x = runif(100) # creates a vector of 100 Unif(0,1) random numbers

> x[1] # the first element of x

> x[c(1,3,5)] # a vector containing 1st, 3rd and 5th elements of x

> y = x > .5 # a 100-long vector of Boolean values y[i] is T iff x[i] > .5

> z = x[x>.5] # the ‘‘x’s’’ that are greater than 5

1



Plotting Try the following

> x = seq(0,1,length=100)

> y = x^2 # y = x squared

> plot(x,y) # plot with (x[1],y[1]) \ldots, (x[100],y[100])

> plot(y,x)

> plot(y) # same as plot(1:length(y),y)

Source Files You will want to write simple programs in R and this always requires some trial, error and iteration. I
recommend the following procedure: Create a “source” file in any text editor containing your R commands. This could
be emacs or the Windows “Notepad” or whatever you are comfortable using. Suppose you create the following file named
“myprog.r”in your editor:

len = 100

x = runif(len,-.5,.4)

y = cumsum(x) # y[1] = x[1], y[2] = x[1]+x[2], etc.

plot(exp(y))

title("my stock price")

print("history is: ")

print(y)

This technique allows you to write a program in the usual incremental way. If you want to get a hard copy of the printout
and the plot (for example, to submit as your homework), do the following

> postscript("myplot.ps") # write plot in the postscript file ‘‘myplot.ps’’

> sink("myout.txt") # write text output to ‘‘myout.txt’’

> source("myprog.R") # run the program you created

> dev.off() # redirect plots to screen. Don’t forget this!

> sink() # redirect output to screen. ditto.

Quitting and help

> help("rnorm") # gives information about the function rnorm. Of couse this works

> # for other functions too.

> q() # quitting the program. Hope you had fun.

2


