
Class Notes for I546/N546

Christopher Raphael

December 8, 2009

Chapter 1

Exploratory Data Analysis

Exploratory Data Analysis (EDA) is a catch-phrase from statistics that describes a number of inventive
ways to understand data by visualizing (or sonifying) them. Given our working motto of “Music as Data,”
music is also amenable to such techniques.

The class web page: http://www.music.informatics.indiana.edu/courses/I546/ contains a variety of mate-
rials we will use this semester. In particular there is a directory containing a collection of MIDI (=Musical
Instrument Digital Interface) files. Please take a look at this directory and play some of the midi files using
any generic midi player (usually your web browser will know how to find the appropriate player). Each
midi file in this collection has an associated data file suffixed by “.dat”, so a file named “xxx” would have
both

1. xxx.mid (the midi file)

2. xxx.dat (the data file)

Generally speaking, the midi files are only for listening since they represent their music data in a rather
complicated manner. See http://253.ccarh.org/handout/smf/, for instance, if you would like a detailed
description of the midi file format. We will instead use the data (.dat) files for our analyses. They are
derived, by program, directly from the midi files though they contain less information.

Each data file has two columns of numbers containing the onset times of notes, in midi “ticks,” and
the midi pitches:

times in midi ticks midi pitches
t1 p1

t2 p2

t3 p3
...

...
For instance, “Mary had a Little Lamb” would begin something like:

0 64
256 62
512 60
768 62
1024 64
1280 64
1536 64

...
...

Midi ticks are a time unit defined in the midi file — usually the midi file tells how many midi ticks
exist in each quarter (above we have assumed 256 ticks per quarter). We will generally just be interested

1

2 CHAPTER 1. EXPLORATORY DATA ANALYSIS

in the relative values (eg. t1 twice (half) as large as t2). Usually midi files represent changes of tempo in a
separate tempo “track.” Thus, even if there are change in tempo, any particular musical note value (e.g.
quarter note) will be constant in midi ticks. This is useful for analysis of symbolic music since interpretive
information is separated from score information.

The midi pitches are in the range of 0 – 127, with 60 representing “Middle C”, 61 representing “Middle
C#” etc. http://www.informatics.indiana.edu/donbyrd/Teach/MusicalPitchesTable.htm gives a listing of the
midi pitches with their associated note names and frequencies in cycles per second (Hz).

1.1 Pitch Analysis (pitch dist.r)

Most of the scenarios we will discuss in the class have associated R programs. I will indicate this as above:
pitch dist.r is the program that demonstrates the ideas of this section. These programs are all available
on the class web page http://www.music.informatics.indiana.edu/courses/I546/.

We are interested in examining the pitch content of a particular piece of music. We will do this by
counting the number of each type of pitch that appear in a piece. We can do this by either counting
the instances of each pitch, or of each pitch class. We will call all instances of the note C pitch class 0,
regardless of what octave they occur in. Similarly, we will call all instances of C# or D[, pitch class 1, etc.
giving 12 pitches class 0, . . . , 11 as in the following table.

C,B# C#,D[D D#,E[E,F[F,E# F#,G[G G#,A[A A#,B[B,C[
0 1 2 3 4 5 6 7 8 9 10 11

Note that we can compute the pitch class, c of a midi pitch, m by

c = m mod 12

where a mod b gives the remainder when a is divided by b. For instance, note that all of the C’s:
. . . , 36, 48, 60, 72, 84 . . . have remainder 0 when divided by 12, so all are in pitch class 0.

1.1.1 Tonic and Mode

Tonal music (music that is “in a key”) has a main pitch that serves as the “resting place” or “home
base” known as the tonic. Often we recognize the tonic without knowing exactly how we arrive at this
conclusion, though one can make this determination by statistical or algorithmic means, as well. As we
consider examples of pitch distributions, think about algorithmic means or “formulas” for identifying the
tonic and mode.

Often the notion of scale plays into our understanding. We will deal with two kinds or modes of scales:
major and minor. Each of these scales is formed of an arrangement of half steps (difference of 1 midi pitch)
and whole steps (difference of 2 midi pitches) as indicated in the following tables where W=whole step and
H=half step.

Major Scale:
W W H W W W H

C D E F G A B C

Minor Scale:
W H W W ? ? ?

A B C D E F G A
(F#) (G#)

1.1. PITCH ANALYSIS (PITCH DIST.R) 3

midi/RagTime_Joplin/enter.dat

class

Fr
eq

ue
nc

y

0 2 4 6 8 10

0
10

0
20

0
30

0
40

0
50

0 c

c#/db

d

d#/eb

e

f

f#/gb

g

g#/ab

a

a#/bb
b

Figure 1.1: Pitch Histogram for the “Entertainer”

4 CHAPTER 1. EXPLORATORY DATA ANALYSIS

Observe the pitch distribution for the “Entertainer” in Figure 1.1. See how the notes in the C major
scale occur in greater proportion than the other notes, with the greatest preference for the pitch class of
C. This suggests the piece is in C Major, (which it is).

1.2 Rhythm (time dist.r)

Much music either explicitly or implicitly has a meter. Western music notation captures some aspects of
meter with a time signature. For instance

4/4 = “four counts to a measure; a quarter note gets 1 count”

6/8 = “six counts to a measure; eighth note gets 1 count”

Historically, time signatures are usually associated with subdivision tendencies. For example, 6/8 time
has “duple” subdivision of measure with triple subdivision of beat, while 4/4 typically has duple subdivision
of measure, half measure, and beat. These subdivision tendencies can be represented by tree diagrams:

beat

measure
6/8

measure

half

quarter eighth

4/4

1.2. RHYTHM (TIME DIST.R) 5

1.2.1 Finding Rhythmic Structure in Music Data

Consider the following simple experiment. Suppose we have a collection of regularly spaced onset times,
say 0, 10, 20, 30, 40, Suppose we “mod out” (examine the remainder) using different numbers as our
divisor:

mod10

0 mod 10 = 0

10 mod 10 = 0

20 mod 10 = 0

30 mod 10 = 0

40 mod 10 = 0

50 mod 10 = 0

. . .

So the histogram of the onset times “mod 10” would be
point mass distribution

times%%m

De
ns

ity

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

6 CHAPTER 1. EXPLORATORY DATA ANALYSIS

Similarly if we mod out by 7, then

mod7

0 mod 7 = 0

10 mod 7 = 3

20 mod 7 = 6

30 mod 7 = 2

40 mod 7 = 5

50 mod 7 = 1

60 mod 7 = 4

70 mod 7 = 0

. . .

the histogram would be
(nearly) uniform distribution

times%%m

De
ns

ity

0 1 2 3 4 5 6

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

1.2. RHYTHM (TIME DIST.R) 7

modding out by correct beat length

times%%m

De
ns

ity

0 5 10 15 20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

modding out by incorrect beat length

times%%m

De
ns

ity

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

modding out by twice−too−large beat length

times%%m

De
ns

ity

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

Figure 1.2: onset times of repeated eighth and two sixteenths when modded out by (left) the correct beat
length, (middle) a incorrect beat length, and (right) a beat length that is twice too long.

Finally, if we mod out by 20, then

mod20

0 mod 20 = 0

10 mod 20 = 10

20 mod 20 = 0

30 mod 20 = 10

. . .

the histogram is
Histogram of times%%m

times%%m

De
ns

ity

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

For another example, consider the rhythm of an eighth and two sixteenths, repeated over and and as
in the “William Tell Overture” or as Dmitri Shostakovitch is so fond of. In terms of onset times in midi

8 CHAPTER 1. EXPLORATORY DATA ANALYSIS

ticks, this would look like: 0, 10, 15, 20, 30, 35, 40, 50, 55, Figure 1.2 shows the histograms when
we mod out by the “correct” beat length (20) with the incorrect choices of 15 and 40. Note the general
pattern in which the correct beat length shows the beat pattern clearly, while an incorrect choice of beat
length tends to produce a more uniform distribution. Note the special case of a beat length that is twice
too long. In this situation we see the same beat pattern repeated exactly (or nearly so) twice in a row. In
looking at these figures, remember the “circular” nature of the histograms, so that the right edge is really
“right next to” the left edge.

1.2.2 Real Examples

The real world is messier, but the same ideas apply. In particular, plausible choices of important musical
length (beats, measures, etc.) lead to more concentrated (less uniform) histograms that clearly depict
rhythmic structure. For instance, see the example of the “Carolan’s Welcome” which can be found in the
“Irish” subdirectory of the midi files for the class. Figure 1.3 shows the histogram of onset times when we
mod out by both the correct beat length and an incorrect beat length. Notice how one can see quite a bit
of detail about the typical beat patterns by examining the correct beat histogram.

However, be cautioned that in real-world examples:

1. Don’t have exact repetition of beat and measure patterns, but rather patterns that occur frequently.

2. Periodicity occurs at several levels, such as beat and measure, or maybe pairs of notated measures.

Figure 1.4 shows the onset times modded out by the correct measure length in the “Carolan’s Welcome.”
In this example it is clear that the piece is in 3/4 time since given the triple subdivision of the measure
and the duple subdivision of the beat.

1.2.3 Semi-Automatic Characterization of Rhythmic Structure

Here is an algorithm or “recipe” for finding the appropriate beat lengths and measure lengths while deducing
rhythmic structure of the measure. Unlike a “real” algorithm, the steps must be executed with some
reflection and subjective comparison to get the desired results.

1. Find the shortest unit of musical time having the property that nearly all note durations are multiples
of this time unit. Sometimes this unit is referred to as the tatum (= temporal atom) and we will
denote it by t. This will be a unit such that, when the durations are modded out by the unit, we get
a highly concentrated histogram. Note that we do this with the note durations a.k.a. the inter-onset
times (IOIs) and not the actual onset times.

2. Assuming only groupings of 2 or 3, mod out by 2 × t and 3 × t. Determine the “better” grouping as
the more “patterned” and less “uniform” histogram. Let f1 = 2 or 3, whichever is better. To find
the next grouping, repeat modding out now with 2 × f1 × t and 3 × f1 × t and let f2 be the best of
these choices.

3. Continue in this manner until additional grouping factors of 2 and 3 give nearly identical copies of the
same histogram. At this point stop, since we are no longer finding meaningful rhythmic structure.

To interpret the results, suppose we end up with the collection of factors: 2 × 2 × 3 × t. This would
be characteristic of a time signature such as 12/8 that has two levels of duple grouping followed by a level
of triple grouping. Of course, given the way some music can be reasonably described by several choices
of time signature, we cannot say for sure what would be the notated choice. However, we do have an
understanding of the rhythmic structure of the piece.

1.2. RHYTHM (TIME DIST.R) 9

Modding by correct beat length

times%%(384)

Fr
eq

ue
nc

y

0 50 100 150 200 250 300 350

0
10

0
20

0
30

0
40

0
50

0
60

0

Modding by wrong beat length

times%%(370)

Fr
eq

ue
nc

y

0 100 200 300

0
2

4
6

8
10

12

Figure 1.3: onset times when modded out by correct and incorrect beat lengths. The correct beat length
shows that most onsets lie on the beat, while there is occasional subdivision into eights, and less frequent
subdivision into 16ths. Also visible is the arpeggiated pickup to the beat

10 CHAPTER 1. EXPLORATORY DATA ANALYSIS

Modding by measure length

times%%(3 * 384)

Fr
eq

ue
nc

y

0 200 400 600 800 1000

0
10

0
20

0
30

0
40

0

Figure 1.4: Onset times of “Carolan’s Welcome” when modded out by correct measure length

1.3. EXPRESSIVE TIMING (ONSET.R) 11

1.3 Expressive Timing (onset.r)

The class web site has directory called ost containing pairs of files with the names xxx.wav and xxx.ost
where “xxx” identifies the piece. The .wav files are, of course, actual recordings that you can play with
essentially any media player. The .ost files (which stands for onset time) give information about the actual
timing of the performance. In particular, each note of the piece is expressed as a row in the data file where
the first three elements describe the starting time of the note in musical units while the last entry gives
the onset time of the note in real time units. Real time is expressed in terms of “frames” where a frame
lasts for 256/8000 seconds. Thus there are about 31, or more precisely 8000/256, frames per second. The
first three entries of a row give

1. the measure number

2. the numerator of the measure position

3. the denominator of the measure position

So, for instance, if an .ost file begins with

1 7 8 131

2 0 1 202

. . . .

. . . .

. . . .

this would mean the first note of the piece begins 7 eighth notes into the measure (the eighth “pickup” to
the measure) and it was played at 131*256/8000 seconds. Similarly, the 2nd note begins at the start of
the 2nd measure and was played at 202*256/8000 seconds.

You should be careful not to interpret the numerator and denominator given by the middle two columns
as representing the fraction of the measure that has elapsed. For instance, in 3/4 time steady eighth notes
would produce measure positions: 0/1, 1/8, 1/4, 3/8, 1/2, 5/8. Clearly at the 1/8 position 1/6 of the
measure has elapsed. However, in 4/4 time (or any n/n time) the measure position is the same as the
fraction of the measure that has elapsed.

Figure 1.5 shows the onset times for a performance of the opening of the 2nd movement of the famous
Rachmaninov 2nd piano concerto, plotted in various ways. The upper left panel shows the onset times (in
seconds) for the first 70-or-so measures, plotted against musical time (in measures). The slope of the line
is an indication of the local tempo, showing that there is a significant overall tempo change around bar 50.
The upper right panel shows only the first 10 measures of the piano entrance with each measure position
given a different color. From this image we can see slight deviations from the basic tempo showing the
way in which expressive timing is used. The bottom left panel shows the same thing, but with only the
downbeats (starts of each measure) given a different color. The bottom right panel shows the inter onset
times (IOIs = times between consecutive onsets) with a different color given to each of the 12 different
possible measure positions (each quarter note of 4/4 is subdivided at the triplet level). Note the somewhat
regular stretching of musical time that happens leading up to the beginning of each measure. In this figure
we show the trajectory of several measures with line segments. It is interesting to see if the timing shows
a tendency for the player to group into 3 groups of 4 (as the pitches suggest), or 4 groups of 3 (as the time
signature suggests).

12 CHAPTER 1. EXPLORATORY DATA ANALYSIS

20 40 60 80

50
10

0
15

0
20

0
25

0
30

0
35

0

Rachmaninov Concerto 2 Mvmt 2

pos in measures

tim
e in

 se
cs

6 8 10 12 14

30
40

50
60

mus[index]

sec
s[in

de
x]

6 8 10 12 14

30
40

50
60

mus[index]

sec
s[in

de
x]

6 8 10 12 14

30
40

50
60

mus[index]

sec
s[in

de
x]

0 2 4 6 8 10

0.0
0.1

0.2
0.3

0.4
0.5

0.6

measpos[index]

ioi

Figure 1.5: Various ways of plotting the onset times of the piano in the Rachmaninov 2nd Piano Concerto,
Mvmt 2

1.4. PIANO ROLL REPRESENTATION (PIANO ROLL.R) 13

0 1000 2000 3000 4000 5000 6000

50
55

60
65

70
75

ticks[1:range]

pitc
h[1

:ra
ng

e]

Figure 1.6: Piano Roll representation of Chopin “Raindrop” Prelude with an attempt at finding the voices
automatically

1.4 Piano Roll Representation (piano roll.r)

A “piano roll” representation plots each note of a piece of music with the time of the note in musical
units (say beats) on the x axis and the pitch of the note (say in midi pitch) on the y axis. This kind of
representation is straightforward and easy to interpret.

A voice is a monophonic (one-note-at-a-time) musical part. This notion is nearly always meaningful
when we have music played by a collection of monophonic instruments or vocal parts. In fact, the notion
of a voice is often meaningful in piano music as well. In the homework you are asked to produce a piano
roll representation in which you (do your best to) group the notes into voices by drawing line segments.
Figure 1.6 shows a piano roll representation of the Chopin “Raindrop” prelude. In this figure I have
attempted to compute the voices automatically, as your homework asks, and have drawn them with line
segments. Voices are useful for a number of music informatics applications. The main reason for this is
it is easier to model and “process” a one-dimensional sequence, making individual voices easier to handle
than polyphonic music.

14 CHAPTER 1. EXPLORATORY DATA ANALYSIS

0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

scatter of chopin preludes

prop of most common pitch class

pro
p in

 lea
st c

om
mo

n 5
 pit

ch
cla

sse
s

p1

p2

p3p4

p5 p6

p7

p8

p9

p10

p11

p12

p13

p14

p15

p16

p17p18

p19

p20

p21

p22

p23

p24

Figure 1.7: The Chopin Preludes with the frequency of the most common pitch class plotted against the
frequency of the 5 least common pitch classes.

1.5 Various Scatter Plots

The previous plots are all ways of viewing single pieces of music where the objects we plot are notes. It
can also be interesting to develop plots where the plotted objects are something other than notes. In the
following scatter plots, each plotted point will represent a piece of music, though one can imagine plots
where points represent composers, genres, pianos, orchestras, reviews, or many other aspects of music.

Figure 1.7 is computed using the chopin scatter.r program on the class web page. This example
computes two numbers from each of the 24 Chopin preludes, measuring aspects of the distribution of pitch
classes. These two numbers are used as the x and y coordinates of a plotted point. The horizontal axis
measures the proportion devoted to the most common pitch class — often the tonic. It is difficult to
describe precisely what this means in musical terms, but pieces that modulate would likely have lower
values for this “feature.” The vertical feature measures the proportion devoted to the 5 least common
pitch classes. For a piece that remains in a single key this would measure something like the proportion of
out-of-scale notes. Informally we can view this is a measure of chromaticism.

“Outliers” are points that are “far away” from the majority. It is interesting to listen to the outliers of
Figure 1.7 to see if the plots genuinely capture aspects that may be of musical interest. Note the “Raindrop”
prelude shows up as an outlier, though not for the reason we had anticipated. Rather, the most frequent
pitch class is the dominant note that represents the ostinato raindrops. However, the “highest” members
of the plot do seem to represent the more chromatic preludes.

Figure 1.8 shows a collection of Joplin rags, Beatles songs, and Abba songs computed from the R file
rhythm scatter.r. For each song we have computed both the proportion of notes that lie on the beat

as well as the proportion that lie exactly between two beats. Our goal in doing this was to differentiate

1.5. VARIOUS SCATTER PLOTS 15

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.0
0.2

0.4
0.6

0.8

scatter of beatles, abba, joplin

prop syncopated

pro
p o

n b
ea

t

A
A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AA

A

A

A

A

A

A

T

T

T

T

T

T

T

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

B
B

B

B

Figure 1.8: A scatter plot of a collection of Joplin Rags (T), Beatles songs (B), and Abba songs (A). For
each song we have computed the proportion of notes that lie on the beat versus the proportion that are
(exactly) between beats. Perhaps this latter attribute is a measure of the degree of syncopation.

16 CHAPTER 1. EXPLORATORY DATA ANALYSIS

−5.5 −5.0 −4.5 −4.0 −3.5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

0.3
5

0.4
0

scatter of various pieces

mean of log tempo

std
 de

v o
f lo

cal
 log

 te
mp

o

lalo_symph_esp_mvmt1

mend_vc_mvmt2

moz_cl5tet_mv1

strauss_oboe_mvmt1

tchaik_vc_mt1

mozart_oboe_concerto_mvmt2

mozart_dorabella

wieniawski_vc2_mvmt1

zigeunerweisen

beethoven_romance_2

mend_vc_mvmt1

saintsaens_intro+rondo

strauss_oboe_mvmt2

Figure 1.9: Plot showing the mean log tempo vs. the standard deviation of log tempo for a collection of
actual performances.

between rather “square” pieces — which may be expected to have a large proportion of notes lying on the
beat — with more syncopated pieces — which may be expected to have many offbeats. From the plot one
can see that the Joplin rags do seem to be more syncopated than the Beatles songs, at least according
to this rather informal measure. The prevalence of Abba songs near the origin (0,0) of the plot is due to
inaccurate quantizing of some of the midi files, rather than any attribute of the music itself. The plot is
quite effective at identifying the midi files that have these quantizing errors, since such a small fraction of
notes lie either on the beat or on the after-beat. This is typical of exploratory data analysis, in that you
often finds things other than what you thought you were looking for.

Figure 1.9 shows a collection of actual performances of various movements of concerti and other solo
pieces using the rubato scatter.r program. For each piece I have computed the tempo for each measure
in measures per second. One can then take these tempi and, for each piece, plot the mean or average
tempo versus the standard deviation of tempo. We will come back to the standard deviation more formally
later in the course, but for now, this is simply a measurement of variation in data. You can think of the
standard deviation informally as exactly what the name suggests — the average deviation or difference
of a data point from the center. Thus the tempi would have a high standard deviation when the tempo
changes a fair amount from measure to measure, while the standard deviation would be 0 of the tempo
were completely constant.

When one plots the tempo standard deviation versus the mean tempo, the standard deviation grows
with increasing tempo. This is not because faster pieces are more rubato than slower ones, but rather is
an artifact (unintended side effect) of the way we have measured tempo. For instance, if we looked at a
number of measurements of tempo that were, say 120 bpm plus or minus 5 bpm we would see the same
standard deviation as if we looked at measurements of 60 bpm plus or minus 5 bpm. But, the latter case

1.5. VARIOUS SCATTER PLOTS 17

represents much greater variation in tempo, since 5 bpm represents a bigger proportional change of 60 than
120. Of course, the proportional change is the relevant quantity when measuring tempo change — this is
why the measurements on the old fashioned “Seth Thomas” metronome are closer together for low tempi
than for higher tempi.

Many measuring scenarios occur where the importance or relevance of a change is measured by the
proportional increase or decrease. For instance, consider the price of a stock where the proportional change
tells us how much money we made or lost. When plotting such data it is better to measure the logarithm

of the actual values, since the same proportional change always gives the same difference in the log. That
is, since log(a/b) = log(a) − log(b), then

log(px) − log(x) = log(p) = log(py) − log(y)

That is the same proportional change gives the same difference in logarithms. Thus pieces with the same
amount of proportional tempo variation would see about the same standard deviation of the log tempo.

In Figure 1.9 it is easy to find the fast and slow pieces by looking at the horizontal axis, while the
vertical axis measures our proxy for rubato — std dev of log tempo. The relative rankings of rubato are
not surprising considering the composers and the tempi. That is, with some exceptions, the classical era
movements are less rubato and the slower movements are more so.

18 CHAPTER 1. EXPLORATORY DATA ANALYSIS

Chapter 2

Probability and Statistics Introduction
and the Bag of Notes Model

As a companion to this presentation I recommend you read the first 6 chapters of the Grinstead and Snell
text that is on the web page. I recommend reading the material gradually along with the presentation of
the material in class.

2.1 Basic Notions of Probability and Statistics

Some experiments have random outcomes. We denote the possibles outcomes of an experiment as set
Ω = {ω1, ω2, . . . , ωn}. Ω is often called the sample space. We will only deal with experiments that have a
finite number of outcomes. Examples are the following:

1. Flip 3 coins: Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT} All of these outcomes are
equally likely to occur.

2. Throw pair of dice. Possible dice totals are Ω = {2, 3, . . . , 12}. Of course, the possible outcomes are
not equally likely.

3. Examine the pitch class of a “randomly” chosen note. Ω = {c, c] . . . , b}

A probability distribution, p(ω) assigns probabilities to the possible outcomes ω ∈ Ω, such that

• p(ω) = 0 ⇒ ωcannot occur.

• p(ω) = 1 ⇒ ωis certain to occur.

If 0 < p(ω) < 1 then p(ω) is the fraction of times ω would occur if experiment is replicated over and over.

A probability distribution must have

1. 0 ≤ p(ω) ≤ 1

2.
∑

ω p(ω) = 1

An event is a subset of the sample space, A ⊆ Ω. For events, A, we have

P (A) = the probability of A =
∑

ω∈A

p(ω)

19

20CHAPTER 2. PROBABILITY AND STATISTICS INTRODUCTION AND THE BAG OF NOTES MODEL

x

x
x

x

x

xx

x

x x
x

x

x
x

x

x

x

x x

x

x
x

A
B

x

x

x
x

x x x

x

x
x

x

Figure 2.1: Pictorial description of conditional probability.

Example: Coin Flipping

Flip a coin 3 times and let A be the event that the first flip is H. Then

P (A) = p(HHH)
︸ ︷︷ ︸

1/8

+ p(HHT)
︸ ︷︷ ︸

1/8

+ p(HTH)
︸ ︷︷ ︸

1/8

+ p(HTT)
︸ ︷︷ ︸

1/8

= 1/2

Example: Ω = Sum of Dice

Let the event B = sum ≤ 3. Then P (B) = p(2) + p(3) = 1/36 + 2/36 = 3/36

Conditional Probability

If A,B are events P (A|B) is the conditional probability of A occurring given that B has occurred. The
definition of conditional probability is

P (A|B) =
P (A

and
︷︸︸︷

∩ B)

P (B)
=

P (A,B)

P (B)

The meaning of this is described in figure 2.1. If we know that B has occurred then our “entire world” is
restricted to B. Knowing this, the probabilities in B must be recalibrated or scaled to sum to 1, since we
know that B must occur. To do this, we simply divide the probabilities of the elements of B by

∑

ω∈B p(ω).
Thus P (A|B) must be the sum of the probabilities that are in both A and B, but now with each probability
divided by

∑

ω∈B p(ω). This is exactly what the definition says.

Example

Let A = Dice sum is odd and B = Dice sum ≤ 3. Then

P (A|B) =
P (A,B)

P (B)
=

P (Dice = 3)

P (Dice ≤ 3)
=

2/36

3/36
= 2/3

2.1. BASIC NOTIONS OF PROBABILITY AND STATISTICS 21

Independence

Two events, A,B, are independent if one occurring has no influence on the other occurring. Said more
precisely, that is

P (A|B) = P (A)

As a consequence, if A,B being independent then

P (A) = P (A|B) =
P (A,B)

P (B)
=⇒ P (A,B) = P (A)P (B)

This latter relation, P (A,B) = P (A)P (B) is usually taken as the definition of independence. In practice,
independence is usually an assumption one makes, rather than something that is verified from probabilities.

Example

Suppose A is the event that the dog gets a walk and B is the event that the dog steals food. Suppose that
P (A) = .95 and P (B) = .05 and that the two events are independent. Then

P (A,B) = P (A)P (B) = (.95)(.05) = .0475.

Random Sample

A random sample is a collection of independent identically distributed (having same probability distribution)
random experiments.

Example

100 Bloomington residents are chosen from the entire population of Bloomington residents by putting their
names in a jar, selecting one at random, replacing it and mixing thorougly, and continuting this 100 times.
We only observe the political affiliation of individual (D = Democrat, R = Republican).

This is a random sample since the trials have no affect on one another and hence independent. Also,
each time we have the sample probability of drawing a R or D, so the trials are identically distributed.

Suppose the result is DDRRR Suppose that P (D) is the proportion of Democrats and P (R) the
proportion of Republicans. Then

P (DDRRR . . .) = P (D)P (D)P (R)P (R)P (R) . . . = P (D)#DP (R)#R

Maximum Likelihood Estimation

Say want to estimate the proportion or probability of Democrats or Republicans from a random sample.
(Assume these are the only possibilities). The maximum likelihood estimate (MLE) chooses the probability
giving the highest likelihood to the data — that is, the best explanation of the data.

Let p = P (D) (so 1−p = P (R)) and suppose we sample N voters. The usual statistical notation writes
the estimate of some quantity as that same quantity with a “circumflex” or “hat” over it. So we will write
p̂ for our estimate of p and refer to this as “p hat.” The obvious estimate of p using our data would be

p̂ =
#D

N

What about the MLE for p?

22CHAPTER 2. PROBABILITY AND STATISTICS INTRODUCTION AND THE BAG OF NOTES MODEL

We know that P (data) = p#D(1 − p)#R. The MLE maximizes P (Data) as a function of p. That is

p̂ = arg max
p

p#D(1 − p)#R

= arg max
p

log(p#D(1 − p)#R)

= arg max
p

#D log(p) + #R log(1 − p)

To maximize this, we set the derivative equal to 0 and solve for p to get p̂. That is,

#D

p̂
− #R

1 − p̂
= 0

Substituting N − #D for #R and solving for p̂ gives

p̂ =
#D

N

This is good news since the MLE does the obvious thing in a simple case where it is easy to see what the
obvious thing is. This result holds more generally, as follows.

Suppose we have an experiment taking values in Ω = {ω1, . . . , ωK}. Perform the experiment N times
independently. By definition, the MLE estimate, p̂(ω1), . . . p̂(ωK) chooses the p(ω1) . . . p(ωK) such that

P (data) = p(ω1)
#ω1p(ω2)

#ω2 . . . p(ωK)#ωK

is maximized. While the calculations to maximize this quantity are somewhat more complex, they yield
the same result:

p̂(ω1) =
#ω1

N

p̂(ω2) =
#ω2

N
...

...

p̂(ωK) =
#ωK

N

The R examples mle.r demonstrates the simple computation of the MLE in some simple examples.

Music Example

We have observed the pitch class histogram (the # of each pitch class) for a number of different pieces
already. We write the histogram as h(ω) where h(ω) is the number of notes of pitch class ω with ω ∈
{c, c#, . . . , b}. If N is the number of notes in the piece, then h(ω)/N is the proportion of notes of pitch
class ω. That is p̂(ω) = h(w)/N is our maximum likelihood estimate of the true probability of ω, p(ω).

Classification

A classifier takes data, x, and tries to categorize it according to “classes” C1, C2, . . . , CL. For example,

1. An email message can be viewed as a string of characters x = x1, x2, . . . , xN The email could be
classified into two classes: Spam and Not Spam.

2.1. BASIC NOTIONS OF PROBABILITY AND STATISTICS 23

2. The image of a handwritten letter or number could be represented as an array of grey-level values:

x =

x11 x12 . . . x1N

x21 x22 . . . x2N
...

...
...

...
xN1 xN2 . . . xNN

x could be classified according to classes 0,1,. . . ,9,A,B,. . . ,Z.

There are a great many techniques for performing classification, though statistical classifiers are among
the most successful approaches for many problems.

Maximum Likelihood Classification

Suppose we have observed data x = (x1, . . . , xN) which we would like to classify according to categories
C1, C2, . . . CL. Imagine that we have a probability model for the data under each class: pC1

(x), pC2
(x), . . . , pCL

(x).
Usually this would be learned (estimated) using “training” data in which the classes of each training exam-
ple are known. The MLE estimate chooses the class that gives that data the greatest possible likelihood,
as it is the best explanation of the data, x. That is,

ĉ(x)
︸︷︷︸

Estimated Class

= arg max
l

pCl
(x)

Example: Key Estimation (key est.r)

Suppose the possible keys are C, C#, . . . , B (the major keys) and c, c#, . . . , b (the minor keys). For each
key, suppose we have learned a pitch class distribution simply by observing the proportions of the various
pitch classes for music known to be in the key. For example, our C distribution may look something like
Figure 2.2. If x = (x1, . . . , xN) is a vector of pitch classes taken from the notes of a piece of music, we can
compute the probability of x, p(x), under the assumption that the piece was in C Major by assuming that
x is a random sample from the C major distribution. In that case:

pC(x) = pC(x1)pC(x2) . . . pC(xN)

= pC(0)#x=0pC(1)#x=1 . . . pC(11)#x=11

This sort of model is called a “bag of notes” model since the order of the notes is not considered important
in the probability model. The MLE approach would then proceed by estimating a pitch class distribution
for each of the 24 possible keys and then choosing the key giving the greatest probability to the data, under
our random sample model.

Some comments on the implementation of this idea:

1. Do we really need to estimate the key distributions, pk, separately for each possible key? It is
reasonable to assume that the probability of the tonic is the same for all of the major keys. A similar
assumption would apply to all of the 11 remaining chromatic pitches, for that matter. Thus we could
estimate a single major and minor distribution and obtain all 24 models by translating or transposing

the appropriate minor or major model to the desired key. To be more specific, if pC is the C Major
distribution, then the D Major distribution would be given by pD(i) = pC((i − 2) mod 12).

2. Maximizing pk(x) over the possible keys, k, is the same as maximizing log(pk(x)) over the possible
keys. This comes from the fact that the log function is increasing as shown if Figure 2.3. When the

24CHAPTER 2. PROBABILITY AND STATISTICS INTRODUCTION AND THE BAG OF NOTES MODEL

2 4 6 8 10 12

0.0
5

0.1
0

0.1
5

0.2
0

pitch class

P(p
itch

 cla
ss)

Figure 2.2: The empirical probability distribution for the key of C major

object we seek to maximize is a product of many factors, often it is easier to maximize the log of the
object, which becomes a sum. So, in our case,

log(pk(x)) = log(pk(0)
#x=0pk(1)

#x=1 . . . , pk(11)
#x=11)

= (#x = 0) log(pk(0)) + (#x = 1) log(pk(1)) + . . . , (#x = 11) log(pk(11))

The R program key est.r implements this idea for key estimation assuming we are only dealing with
major keys. In this example we

1. Train a C major model by transposing several pieces to C major and observing the proportion of
each pitch class over the entire collection of pieces.

2. Estimate the key of a particular piece in major mode by computing all 12 translations of the C major
distribution and finding which one gives the maximum log likelihood to the data.

3. While there may be better ways to do this, we can perform a simple-minded harmonic analysis by
applying the approach to estimate the key of each measure of a piece. The key estimates could be
taken to be chord labels for the different measures.

Random Variables

A random variable is a quantity measured from a random experiment. The distribution, p(x), of a random
variable gives the probability of the possible outcomes, x. Typical notation uses capital letters for random
variables and small outcomes for their outcomes. So X = 5 denotes the event that the random variable,
X, takes on the value 5, and P (X = 5) is the probability of this event. Thus p(x) = P (X = x).

2.1. BASIC NOTIONS OF PROBABILITY AND STATISTICS 25

0 5 10 15 20 25 30

−4
−2

0
2

x

log
(x)

Figure 2.3: The log function is increasing. This means that x > y ⇔ log(x) > log(y). So one can always
maximize the log of a function rather than the function itself to find the maximizing value.

26CHAPTER 2. PROBABILITY AND STATISTICS INTRODUCTION AND THE BAG OF NOTES MODEL

For example, flip a coin 3 times and let X = # H’s. Then X can be tabulated as follows:

Ω HHH HHT HTH HTT THH THT TTH TTT
X 3 2 2 1 2 1 1 0

In this case we have

P (X = 3) = p(3) = 1/8

P (X = 2) = p(2) = 3/8

P (X = 1) = p(1) = 3/8

P (X = 0) = p(0) = 1/8

Expectation

A random variable, X, has expectation, E(X), defined as

E(X) =
∑

x

xp(x) = the “average” value of X

In the above example we have E(X) = 0(1/8) + 1(3/8) + 2(3/8) = 3(1/8) = 1.5. This is, on average, the
number of heads we would get for each trial of the experiment, since each of the 3 single flips will yield .5
H’s, on average.

Variance

Let X be a random variable with expectation E(X) = µ (µ is for mean which is another name for
expectation). The variance of X, V (X), is defined as

V (X) =
∑

x

(x − µ)2p(x) = E(X − µ)2

In the above example V (X) = (0 − 1.5)2(1/8) + (1 − 1.5)2(3/8) + (2 − 1.5)2(3/8) + (3 − 1.5)2(1/8) = 3/4
Since the variance is the average squared difference from the mean, µ, variance is a measure of the “spread”
of the distribution. Typically one writes σ2 for the variance of a random variable.

The standard deviation is the (positive) square root of the variance. Since the variance measures the
average squared difference from the mean, then the standard deviation can be thought of informally as
the average difference from the mean. Normally one writes σ for the standard deviation of a random
variable. The standard deviation is useful as the basic unit of variation for a random variable. Thus, there
are many results that describe probabilities of events such as the random lying within within so many
standard deviations of the mean. For instance, for “normal” random variables (a term to be defined later)
P (|X − µ| < 2σ) ≈ .95 and for any random variable P (|X − µ| < kσ) ≥ 1 − 1/k2. Results such as these
clarify what the standard deviation measures and make its meaning more intuitive.

Entropy

Entropy is a number that measures the amount of “surprise” or uncertainty in a distribution. For instance,
consider the two probability distributions described by Figure 2.4. In the left panel, the distribution

2.1. BASIC NOTIONS OF PROBABILITY AND STATISTICS 27

2 4 6 8 10

0.0
0.2

0.4
0.6

0.8
1.0

distribution with minimum entropy

Index

pro
b

2 4 6 8 10

0.0
6

0.0
8

0.1
0

0.1
2

0.1
4

distribution with maximum entropy

Index

pro
b

Figure 2.4: For the two distributions picture, the left panel is the “point mass” distribution which is
the one that gives the minimal entropy. In contrast, the “uniform” distribution while the right gives
the maximal entropy over all other distributions on the same number of values. Explicitly, if X has a
point mass distribution then H(X) = log2 1

1 = 0. If X has a uniform distribution on n values, then

H(X) = n(log2 n)
n = log2(n).

28CHAPTER 2. PROBABILITY AND STATISTICS INTRODUCTION AND THE BAG OF NOTES MODEL

concentrates all of its weight on the first outcome. Sometimes such a distribution is called a “point mass”
since all of the probability is concentrated on a single outcome. If a random experiment with such a
distribution were performed, there would be no uncertainty as to the outcome before the experiment. In
this case the entropy turns out to be 0. In the case of the right panel we have a “uniform” distribution
in which all outcomes are equally likely. Before an experiment with such a distribution, we would be
completely uncertain about the outcomes, since all possibilities are equally likely. This case turns out to
have maximal entropy. Other distributions fall between these two extremes.

For a random variable, X, with distribution p(x), the entropy of X, H(X), is defined by

H(X) =
∑

x

log2(
1

p(x)
)p(x)

In this definition, log2(y) is the number we need to raise 2 to, to get y — that is, log2(2
q) = q. If we

think of p(X) as the random variable that reports the probability of the outcome X, rather than the value
of X itself, then the entropy can be written as H(X) = E(log2(

1
p(X))). This interpretation becomes more

intuitive after we examine the quantity 1/p(x).
Consider the probabilities 1, 1/2, 1/4, 1/8, These can be tabulated as

p 1 1/2 1/4 1/8 1/16

p = 2q 20 2−1 2−2 2−3 2−4

log2(1/p) 0 1 2 3 4

We can see from this table that log2(1/p(x)) is a measure of the rareness or surprise of outcome x, so
H(X) = E(log2(1/p(X))) is the average surprise.

Entropy and Huffman Coding

Suppose the symbols {a, b, c, . . .} appear as a random sample from some probability distribution. We want
to develop a code in which we represent each symbol as a string of 0’s and 1’s. Such a code is called a
binary code since we use two symbols. We imagine that we are going to send the binary codes for our
symbols to someone else, and require that our code can be decoded by the receiver. For the code to be
decodable, the symbol codes must be the leaves of a binary tree.

For instance, suppose we have the symbols {a, b, c}. We can represent these symbols as a = 00, b =
01, c = 1 corresponding to the tree:

a b

c
0 1

0 1

Note that binary string 01100101 can be decoded into ”bcacb” by beginning at the root of the tree and
descending according to the binary symbols. During the process, we print out the associated letter every
time we reach a leaf node of the tree and return to the root.

Now we imagine that the symbols {a, b, c, . . .} from our alphabet are generated according to some
probability distribution and we want to choose our binary coding of the symbols to give the minimum

2.1. BASIC NOTIONS OF PROBABILITY AND STATISTICS 29

number of binary digits (bits) sent, on average. Thus, it would make sense to use short codes for frequent
symbols and longer codes for rarer symbols. In terms of the language of probability, we wish to choose the
code that minimizes E(# bits per symbol) For instance, suppose we use the coding of {a, b, c} given above

with p(a) = 1/2 and p(b) = p(c) = 1/4 as tabulated as
p 1/2 1/4 1/4

symbol a b c
code 00 01 1

In this case, E(# bits per symbol) = 2 × 1/2 + 2 × 1/4 + 1 × 1/4 = 7/4.

An interesting result from the coding theory tells us that no matter what code we choose,

H ≤ E(# bits per symbol)

where H is the entropy of the distribution. This is useful to know since we know we have achieved the best
possible coding if the expected bits per symbol equals the entropy.

For the example above, the entropy of the distribution is

H = 1/2 log2 2 + 1/4 log2 4 + 1/4 log2 4

= 1/2(1) + 1/4(2) + 1/4(2) = 3/2.

Since the entropy is less than the expected bits per symbol, we have not found the ideal coding yet.
However, it is easy to see that

b

0 1

1
c

a
0

gives E(# bits per symbol) = 2(1/4) + 2(1/4) +1(1/2) = 3/2 = H so this must be the optimal coding.

Example

Consider the following probability distribution on the symbols {a, b, c, d, e} with the proposed binary coding
of the symbols. The associated tree for the coding is also shown.

symbol a b c d e
p 1/2 1/4 1/8 1/16 1/16

code 0 10 110 1110 1111
length 1 2 3 4 4

log2(1/p) 1 2 3 4 4

30CHAPTER 2. PROBABILITY AND STATISTICS INTRODUCTION AND THE BAG OF NOTES MODEL

0 1

1

0 1

0 1

0a

b

c

d e

For this case it is easy to see from the table that the proposed coding is optimal. This is because
E(bits per symbol) is the average of the length row (weighted by the p row) while the entropy, H is the
average of the log2(1/p) row (again, weighted by the p row). Since the last two lines of the table are
identical, the two averages: E(bits per symbol) and H are equal, hence the coding is optimal. That is

H = E(# bits per symbol)

= 1(1/2) + 2(1/4) + 3(1/8) + 4(1/16) + 4(1/16) = 1 + 7/8

Just for illustrative purposes, let’s try a more evenly balanced code that aims for codes of more even
length. Such a code is depicted below.

a b c

d e

0 1

0 1 0 1

0 1

For this coding

E(# bits per symbol) = 2(1/2) + 2(1/4) + 2(1/8) + 3(1/16) + 3(1/16) = 2 + 1/8

which is clearly worse than the one proposed before.

Entropy and Rhythm (entropy.r)

Have observed an interesting property of rhythmic units such as beat and measure:

1. Modding out onset times (observing the remainder when dividing onset times by) a meaningful
musical time unit gives “concentrated” distribution (low entropy).

2. Modding out my meaningless time unit leads to more uniform distribution (high entropy).

Idea: Find beat (or other musical time unit) by looking for time unit that gives low entropy remainder
distribution. The R program entropy.r plots the entropy when we mod out by all possibles choices ranging
from b/3 . . . 3b where b is the true beat length.

2.1. BASIC NOTIONS OF PROBABILITY AND STATISTICS 31

In interpreting the plots generated by applying the entropy.r program to different pieces, we see a
generally increasing trend as the time unit increases in length. This is easy to explain. While we won’t
actually prove this, the entropy, H, has the property:

H(X mod a) ≤ H(X mod ab)

where a, b = 1, 2, 3 . . . ,. In words this says that if we have two time units, u1 and u2 with u2 a multiple

of u1, then u2 always leads to an entropy that is at least as big as u1 when modding out the values X.
This explains the increasing trend in entropy that the R program produces. We can identify the “correct”
(ie musical meaningful) times units as units that give low entropies when compared to their neighbors.
Visually, these correct time units tend to have entropies that lie “below” the curve” generated by the
entire collection of relatively low entropies. While this is not a foolproof rule, it does provide a general
guideline that we will exploit in the coming discussion. I strongly doubt there is any foolproof method of
determining rhythmic structure automatically.

Bayes’ Rule

Suppose we have “states of nature” (Classes) C1, . . . , CL. We have a “prior” model, p(Cl), l = 1, . . . , L
giving the a priori (before any data observed) probability of the various classes. For instance, if we are
trying to identify an instrument that plays in a piece heard on the local radio station, before we listen to
any sound we believe the digeridoo is less likely than electric guitar. Thus, our a priori probability for
the digeridoo should be less than the guitar. Of course, this all may change after we listen to some audio
data, but the prior information should figure into any classifications we make. For instance, if both the
digeridoo and the electric guitar constitute comparable explanations of the audio, our bias should be with
the more likely instrument a priori. Bayes’ rule formalizes this idea.

Suppose, in addition to the prior model, p(Cl), we also have a “data model” giving the probability
of our observations, x, given the class, p(x|Cl) l = 1, . . . , L. Having observed the data, x, what are the
posterior probabilities of the classes C1, . . . , CL? Bayes’ rule is the following calculation:

p(Cl|x) =
p(Cl, x)

p(x)
defn. of conditional prob.

=
p(x|Cl)p(Cl)

∑

k p(x|Ck)p(Ck)
writing out numer. and denom.

where we have used the intuitively plausible law of total probability:

p(x) = p(x|C1)p(C1) + p(x|C2)p(C2) + . . . + p(x|CL)p(CL)

Example (Rare Disease)

A disease affects .1% of a population. A test is devised such that the probability of both false positive and
false negative is .01. If a randomly chosen person tests positive for the disease, what is the probability the
person actually has the disease?

Let D be the event that the person has the disease and write D̄ for the complementary event of not
having the disease. Let + and − be the events of testing positive and negative. We have:

p(D) = .001

p(D̄) = .999

p(+|D̄) = .01

p(−|D) = .01

32CHAPTER 2. PROBABILITY AND STATISTICS INTRODUCTION AND THE BAG OF NOTES MODEL

Using Bayes’ rule we can calculate the probability the person has the disease:

p(D|+) =
p(+|D)p(D)

p(+|D)p(D) + p(+|D̄)p(D̄)

=
(.99)(.001)

(.99)(.001) + .(01)(.999)

≈ x

x + 10x
= 1/11

It is quite unlikely the person who tested positive actually has the disease. The intuition for this result
is given in the calculation that shows there are two ways of explaining the observed test result of +. Of
these, the one in which the person doesn’t have the disease is 10 times as likely as the one in which the
person does have the disease.

Bayes Classifier

The Bayes Classifier chooses the class that maximizes the probability of correct classification. Suppose we
are given p(Cl) for l = 1, . . . , L and p(x|Cl) where the possible classes are {Cl} and the observable data is
x. Bayes’ rule tells us that

p(Cl|x) =
p(Cl)p(x|Cl)

∑

k p(Ck)p(x|Ck)

Thus the Bayes classifier choose the class l that maximizes this probability:

l̂ = arg max
l

p(Cl|x) = arg max
l

p(Cl)p(x|Cl)

Note that this is a minor (but important) variation on the maximum likelihood classifier which was l̂ =
arg maxl p(x|Cl). In the Bayes classifier we take into account both the degree that the classes explain the
data, x, and the a priori likelihood of the classes. The Rare Disease example shows us the importance
of doing this.

Continuous Probability Distributions

So far we have considered “discrete” random variables having only a finite (or countable) number of
outcomes: p(x) x ∈ {x1, x2 . . .}. What if X can take any value? In this case we represent probability
with a density function, f(x). Now probabilities are represented as areas under the curve generated by
f(x). This is described in Figure 2.5 in which we have drawn a density function. For the interval (a, b) the
probability that the random variable X, with density f(x), lies in (a, b) is described by the area under the
curve f(x) between a and b. Or, symbolically,

p(a < X < b) =

∫ b

a
f(x)dx

In many cases one needs calculus to compute such probabilities, however, probabilities for many common
distributions are built into the R language.

The Gaussian Distribution (normal.r)

A random variable X is normal (a.k.a. Gaussian)) with mean E(X) = µ and variance E(X − µ)2 = σ2 if
it has the density function

f(x) =
1√

2πσ2
e−

1

2
(x−µ

σ
)2

2.1. BASIC NOTIONS OF PROBABILITY AND STATISTICS 33

a b

f(x)

Figure 2.5: The density function f(x) gives probabilities of intervals as areas (integrals).

This is the famous “bell-shaped” curve drawn below:

−4 −2 0 2 4

0.0
0.1

0.2
0.3

0.4

Normal density function

x

y

The highest value of the the density is at the mean µ and it is symmetric around this value. Roughly
speaking, one can think of the standard deviation σ as the half width at half height.

Normal distributions are good for fitting many data distributions found in practice. Suppose we have
a sample x1, . . . xn which we wish to model as a normal random sample. How do we get the parameters (µ
and σ) for the distribution? One can show that the MLE estimates µ and σ2 as the empirical mean and
variance. That is:

1. Since µ is the mean or expected or average value of the distribution, take µ̂ to be the average value

34CHAPTER 2. PROBABILITY AND STATISTICS INTRODUCTION AND THE BAG OF NOTES MODEL

of the sample:

µ̂ =
1

n

∑

i

xi

2. Since σ2 is the average or expected squared distance from the mean µ, take σ̂2 to be the average
squared distance from µ̂ over the sample:

σ̂2 =
1

n

∑

i

(xi − µ̂)2

Then we can estimate σ̂ =
√

σ̂2.

Building a Gaussian Classifier (simple irish class.r)

We have seen that a Bayes Classifier is composed of

1. p(Cl) for l = 1, . . . , L (the class probabilities)

2. p(x|Cl) for l = 1, . . . , L (the class-conditional data distributions)

Suppose we have training data x1, . . . , xn with labels t1, . . . , tn for the data points. The label ti tell
which class xi comes from so ti ∈ {1, . . . , L}. To estimate the Gaussian classifier

1. Estimate p(cl) as the fraction of type l in the training data:

p̂(Cl) =
#{ti = l}

n

2. Estimate µl as the empirical mean of the l-labeled examples:

µ̂l =

∑

ti=l xi

#{ti = l}

3. Estimate σ2
l as the empirical mean of the l-labeled examples:

σ̂2
l =

∑

ti=l(xi − µ̂l)
2

#{ti = l}

The Bayes classifier classifies a new point x as the class with the highest posterior probability. That is,
x is classified as Ĉ(x) where

Ĉ(x) = arg max
Cl

p(Cl|x)

= arg max
Cl

p(x|Cl)p(Cl)

p(x)

= arg max
Cl

p(x|Cl)p(Cl)

≈ arg max
Cl

p̂(Cl)
1

√

2πσ̂2
l

e
− 1

2
(

x−µ̂l
σ̂l

)2

= arg max
Cl

log(p̂(Cl)) −
1

2
(
x − µ̂l

σ̂l
)2 − 1

2
log(σ̂2

l)

2.1. BASIC NOTIONS OF PROBABILITY AND STATISTICS 35

Extension to Several Features (time sig feat.r)

Suppose our observable data, x, now measures several attributes, x = (x1, . . . , xJ). The components of x
are often referred to as features. It is often convenient to assume that, under each class, the features are
independent. In this case, the usual terminology is that the features are conditionally independent. The
conditional independence of the features allows us to write the data distributions p(x|C l) for l = 1, . . . , L
as a product:

p(x|Cl) = p(x1|Cl)p(x2|Cl) . . . p(xJ |Cl)

If, in addition, we also assume that the individual feature distributions, p(xj |Cl), are Gaussian with mean
values µjl and variances σ2

jl, then we have

p(x|Cl) =
J∏

j=1

1
√

2πσ2
jl

e
− 1

2
(

x−µjl

σjl
)2

Suppose that µ̂jl and σ̂2
jl are the class conditional estimates of the Gaussian parameters obtained, exactly

as in the preceding section, by looking at empirical averages for each feature under each class. That is,
suppose that our sample vectors are x1, . . . , xn with class labels t1, . . . , tn (we use the superscript to index
the different observations of the feature vector because the subscript is used to index the different feature
values). Then we have

µ̂jl =

∑

ti=l x
i
j

#{ti = l}

σ̂2
jl =

∑

ti=l(x
i
j − µ̂jl)

2

#{ti = l}

Our Gaussian classifier then reduces, by taking logs, to

Ĉ(x) = arg max
l

p(Cl)
∏

j

p(xj|Cl)

= arg max
l

log(p(Cl)) −
1

2

n∑

j=1

[

log(σ2
jl) +

(xj − µjl)
2

σ2
jl

]

36CHAPTER 2. PROBABILITY AND STATISTICS INTRODUCTION AND THE BAG OF NOTES MODEL

Chapter 3

Music as Sequence

Up until now we have regarded a piece of music as a “bag of notes” in which the order of the pitches,
rhythms, or whatever aspect we considered, had no importance. While this is certainly not a true as-
sumption, it led to reasonably simple statistical models that proved useful in our applications. However,
since the order of pitches, rhythms, or whatever musical attribute we treat, is fundamental to the nature
of music, the depth and usefulness of the applications we can model as bags of notes is limited. In this
section of the course we take a view of music as a sequence, rather than an orderless random sample. Of
course, this view is still limited, since not all aspects of music are captured by the notion of a sequence.
For example, much music is composed of a collection of separate voices. While each of these might be
viewed as a sequence, the overall music is composed of a collection of intertwining sequences that have
rather complicated dependence upon on another. However, there are aspects of music, such as functional
harmony, that genuinely are sequences. Often the usefulness of a model does not depend only on how
correct the model is. Rather, there is a trade off between simplicity and correctness. As a broad gener-
alization, the most useful models tend to be the ones that navigate this trade off well — that is, models
that are reasonably simple yet also capture important aspects of the data being modeled.

3.1 Dynamic Programming

A graph is a construction from computer science and discrete mathematics composed of a collection of
nodes and edges. The nodes are places we might visit in the graph, while we can only travel between nodes
that are connected by edges. A particular kind of graph is called a trellis — while more general definitions
are possible, we call a graph a trellis if each of the nodes lives at a level: 0, 1, 2, . . . , n and all edges connect
nodes at successive levels. Such a trellis graph is depicted in Figure 3.1.

The graph in the figure is known as a weighted graph since each of the edges has an associated cost. A
common problem one considers with such a graph is to find the minimal cost path from the start (leftmost
node) to the end (rightmost node), where the cost of the path is the sum of the arc costs traversed along
the path. This optimal path is computed using a technique known as dynamic programming, which relies
on a single simple, yet powerful, observation as follows:

Key Observation and Dynamic Programming Algorithm

For each node, n, in the trellis, the best scoring path to the node is a best scoring path to a
node, m, at the previous level, plus the arc (m,n).

This is clearly true since if we were to consider a suboptimal path from the start to m plus the arc
(m,n), this must achieve a worse score than the optimal path to m plus (m,n). The observation leads
directly to an algorithm for computing the optimal path.

37

38 CHAPTER 3. MUSIC AS SEQUENCE

12

7

5

6

3

20
9

5
4
3
2

10
7
51

5
8

Figure 3.1: A “weighted” trellis graph in which each arc of the graph has a cost. We wish to find the least
costly path beginning at the leftmost trellis node and ending at the rightmost trellis node.

Let c(i, j) be the cost realized in going from node i to node j. Let m(i) be the cost of the optimal path
from the start to node i and set m(start) = 0. Then, reasoning from our “key observation,” we see that
the score of the optimal path to node j must be the best of the optimal paths to the predecessors, i, of j
with (i, j) concatenated onto these optimal paths. Put algorithmically, we can compute the score of the
optimal path from start to end by letting

m(j) = min
i∈pred(j)

m(i) + c(i, j)

Then when these optimal costs are all computed, m(end) will be the optimal cost from start to end.
Of course, we really wanted to find the optimal path, not just its cost. A simple addition to our

algorithm solves this problem. Let

a(j) = arg min
i∈pred(j)

m(i) + c(i, j)

so that a(j) is the optimal predecessor of node j. When we have computed both of these quantities for all
trellis nodes, we can then “trace back” the optimal path by following the optimal predecessors back from
the end node. That is, the optimal path (in reverse order) is given by:

end, a(end), a(a(end)), a(a(a(end))), . . . , start

In the following simple example we have filled in the circles of each node j with the optimal cost to j,
m(j), and have indicated the optimal predecessors of each node with an arrow that points backward along
the appropriate arc.

3

4

1

2

3
6

5
6
1

3
2

4
3

5
7
1

3
7

4

1

2 7

1

4

4

3 6

7

8

7

3.1. DYNAMIC PROGRAMMING 39

3.1.1 Dynamic Programming Examples

While at first blush, dynamic programming (DP), seems like a rather abstract notion, the technique finds
application in a very large range of practical domains such as robot navigation, DNA sequencing, computer
vision, error correcting codes, optimal planning problems, speech processing, and really many more. This
section shows three examples of DP applied to musical problems: piano fingering, voice leading and finding
hypermetric structure.

Piano Fingering (piano fingering.r)

DP can be applied to a whole range of instrument fingering problems to find natural ways to finger
difficult passages. Among the most interesting of these are the piano and the guitar, since these constitute
particularly difficult challenges. It would be fair to say that both problems are still “open” from a technical
point of view, meaning there is considerable room for improvement over what any algorithmic approach
can offer. We look here at a simplification of the problem to the barest essentials, in an effort to illustrate
how DP can contribute.

Suppose, rather than looking at the entire range of piano fingering challenges, we limit our view to the
following.

• We will only consider a single hand.

• We look only at monophonic (one-note-at-a-time) music.

• We do not consider the way in which the damper and sostenuto pedals can be used to solve fingering
issues.

• We do not allow finger “substitutions” (changing the finger on a held note).

• We do not consider any rhythmic component, thus our view of the music is simply a sequence of
pitches.

• We only consider the white keys.

DP can be employed even if many, or perhaps all, of these restrictions are dropped, however the problem
becomes more complex. Our goal here is to pose a plausible and transparent application of DP to a musical
problem.

In keeping with our assumptions, we view the music as a sequence of (white) pitches using the numbering
. . . , -2 = a, -1 = b,0 = c’, 1 = d’, 2 = e’, . . . , with no regard for rhythm: m1,m2, A possible fingering
assigns one finger from

F = {thumb
︸ ︷︷ ︸

1

, index
︸ ︷︷ ︸

2

,middle
︸ ︷︷ ︸

3

, ring
︸︷︷︸

4

,pinkie
︸ ︷︷ ︸

5

}

to each note in the sequence. We will then write our fingering of the music as:

(m1, f1), (m2, f2), . . .

where fi ∈ F .

Example (Mary had a Little Lamb)

The music here, in the key of C Major, is given by 18, 17, 16, 17, 18, 18, 18, . . . and a possible fingering would
be

(18, 2), (17, 2), (16, 2), (17, 2), (18, 2), (18, 2), (18, 2) . . .

This 5-year-old-style fingering suggests that we play each note with the index finger. Can we do better?

40 CHAPTER 3. MUSIC AS SEQUENCE

Idea: Fingering = Path Through Trellis

We view the state of the performance as a (note,finger) pair and view the performance as a sequence of
states. We define a cost for going through each possible state transition and express the total cost of
a performance as the sum of all transitions costs along the performance (=path). We find the optimal
performance through dynamic programming. This is illustrated in the following figure.

1

2

3

4

5

Finger etc

Scale tone pitches

E D C D E E E
18 17 16 17 18 18 18

Note that in this state space we don’t have an explicit start state and end state. We could add a start
state by putting a single state at the left edge of this array and connecting it to each state in the 1st
column. Similarly, we could add an end state by connecting it to the last column. However, there is really
no need to do this. Rather, we modify our conception of DP as now looking for the least expensive path
from any state in the 1st column to any state in the last column. There is almost no modification of the
basic DP algorithm needed to treat this case.

How to express the transition costs?

1. There is a symmetry in fingering that simplifies our situation somewhat. For instance, the difficulty
of starting with the thumb on a note and stretching to the octave above with the ring finger is about
the same as starting with the ring finger on the octave above and stretching downward one octave
with the thumb. We will assume this symmetry holds in general. That is, C((m1, f1), (m2, f2)) =
C((m2, f2), (m1, f1)). The essential idea here is that the difficulty of both of these situations is really
about the same as the difficulty of playing both notes at once with the two fingers. With this
symmetry assumption we can assume that m2 ≥ m1 in all that follows, since if this is
not true, then we can compute the cost by switching (m1, f1) and (m2, f2).

2. When no finger crossing occurs (i.e. f2 > f1) would like to have the difference of fingers about equal
to the difference in pitches m2 − m1 ≈ f2 − f1. We model this as

C((m1, f1), (m2, f2)) = |(m2 − m1) − (f2 − f1)|

3.1. DYNAMIC PROGRAMMING 41

3. We want to discourage using the same finger for different consecutive notes. So when f1 = f2

C((m1, f1), (m2, f2)) =

{

0 if m1 = m2

100 otherwise

4. Finger crossings are more difficult to execute than non-crossings, so we want a mild penalty to
discourage finger crossings when unnecessary (think of trilling with the right-hand middle finger
below the thumb). When crossover occurs, (f2 < f1), we penalize this greatly unless the notes are
neighbors and we cross the thumb under the middle or ring finger.

C((m1, f1), (m2, f2)) =

{

3 if f2 = 1 and f1 ∈ {3, 4} and |m2 − m1| = 2
100 otherwise

The implementation of this on the computer requires some thought, and since it is our first dynamic
programming example we do it in some detail. We can think of the states of our trellis as a two-dimensional
array, with 5 rows (one for each finger) and N columns, one for each note. We will use i,j to designate the
state in the ith row and jth column, which corresponds to the choice of using finger i for note j. We first
discuss computing the function m[i,j], giving the optimal score to node i,j. Note that we need to compute
m for the (j-1)th column before we compute it for the j column, so our initial code must begin with

for (i in 1:5) m[i,1] = 0 # no cost to choosing any finger for the first note

for (j in 2:N) {

compute m[,j] using m[,j-1]

}

We will now compute the jth column of m, m[,j] in another loop that goes inside the loop we already
have. This inner loop will be over the various possible finger choices for the jth note.

for (i in 1:5) m[i,1] = 0

for (j in 2:N) {

for (i in 1:5) {

compute the score of m[i,j]

}

}

To compute m[i,j], we need to use the basic idea of dynamic programming. We will loop over all possible
“predecessors” of node (i,j), which for this problem are (1,j-1) (2, j-1) . . . , (5,j-1), since we can play the
previous note with any finger choice. In the code below we index these previous finger choices with the
variable ii and compute the score we get coming to (i,j) through (ii,j-1), for each finger ii. Any time we
find a score better than the “best-so-far” score, we remember this by resetting m[i,j]. We will denote the
cost of going from state (ii,j-1) to state (i,j) as c(ii,j-1,i,j) here, though we will need to flesh this out in the
final version of the program.

42 CHAPTER 3. MUSIC AS SEQUENCE

0 10 20 30 40 50

0
2

4
6

8
10

Piano Fingering Example

note

sca
le d

egr
ee

3

2

1

2

1

2

1

2

5

4

3

4

3

4

3

1

22

1

2

5

4

3

23

2

1

2

1

2

5

13

2

1

2

1

2

5

13

2

1

2

1

2

5

2

1

2

1

2

5

4

3

2

1

Figure 3.2: Piano fingering example for the 16th note variation of the Mozart “Twinkle, Twinkle, . . . ,”
variations. For simplity, some minor changes have been made so that notes all lie on the white keys. The
finger, 1-5, used for each note is indicated in the plot while the scale degree is on the vertical axis.

3.1. DYNAMIC PROGRAMMING 43

for (i in 1:5) m[i,1] = 0

for (j in 2:N) {

for (i in 1:5) {

m[i,j] = Inf # Inf = infinity --- we know we can do better than this score!

for (ii in 1:5) {

t = m[ii,j-1] + c(ii,j-1,i,j)

if (t < m[i,j]) m[i,j] = t # always true 1st time through loop

but may continue to improve as we iterate

}

}

}

At the end of this section of code we will have computed the array m correctly, giving the optimal
score to each node in our graph. Remember that we are interested in finding the best possible path (i.e.
the fingering) and not the best possible score. We accomplished this by adding a “pointer” to the best
possible predecessor of each node in our drawings. From a computational perspective we will represent
these pointers also as a two-dimensional array. That is, a[i,j] will be a number in 1 to 5, giving the finger
of the best possible predecessor of node i,j. In other words, if a[i,j] = ii, then ii,j-1 is the best precessor of
i,j. To accomplish this we need only make a very minor modification to the program:

for (i in 1:5) m[i,1] = 0

for (j in 2:N) {

for (i in 1:5) {

m[i,j] = Inf

for (ii in 1:5) {

t = m[ii,j-1] + c(ii,j-1,i,j)

if (t < m[i,j]) {

m[i,j] = t

a[i,j] = ii # now a[i,j] is the best-so-far predecessor

}

}

}

}

Finally, we must actually compute the best possible path. First we find the best scoring state at level
N — the last note in the excerpt. This state will tell us the finger to use on the last note. Then we follow
the pointers (the a[i,j]) bacward until we get to level 1. We will hold the optimal fingering in the array f[].
After the above code we need to add the following:

f[N] = which.min(m[,N]) # f[N] is the finger of the best scoring node at level N

for (j=N:2) f[j-1] = a[f[j],j]

This last line requires some thought to understand. Having found the optimal last finger, f[N], we go
through the remaining notes backwards just as we followed the pointers backwards in our graph. We would
choose the optimal finger at note N-1 as the optimal predecessor of node f[N],N — a[f[N],N]. This becomes
our optimal finger for note N-1: f[N-1] = a[f[N],N]. Similarly, we choose the optimal predecessor of finger
f[N-1] at level N-1 to be our finger choice for level N-2. That is: f[N-2] = a[f[N-1],N-1]. The loop makes
quick work of these assignments.

44 CHAPTER 3. MUSIC AS SEQUENCE

The R program piano fingering.r shows a fleshed out implementation of DP for this problem, but
really looks much like what we have above. In the program, we represent both the optimal scores and the
optimal predecessors as the two-dimensional arrays opt score and opt pred[i,j]. Dynamic programming
is used to find the fingering that minimizes our cost function. Figure 3.2 shows an example of the fingering
generated by our program for a simplification of the Mozart Twinkle, Twinkle 16th note variation.

Voice Leading Using Dynamic Programming

Suppose we have a sequence of chords, T1, T2, . . . , TN where, for simplicity, each chord is a triad (here
meaning a collection of 3 of pitches consisting of alternating scale tones). While we assume that each chord
has three notes, it is not difficult to generalize this arbitrary chords. We will write Tn,1, Tn,2, Tn,3 for the
3 midi pitches of the nth triad, moving from bottom to top. We will use the usual terminology of “root,”
“3rd,” and “fifth” to refer to the three pitches of the chord.

For a triad, T , write I(T) for the “inversion” operation that moves the lowest note one octave up. Thus
if T is in “root position” (with the root as the lowest member), then I(T) is the “1st inversion” version of
the chord which has the 3rd of the chord as the lowest member. Similarly, I(I(T)) is the “2nd inversion”
of the chord with the 5th as the lowest member. We will write I k(T) for the operation I(I(. . . I

︸ ︷︷ ︸

k times

(T) . . .))

which iterates the inversion operation k times. Clearly after 3 of these operations, the chord has been
moved one octave up, though we can continue the inversions as long as we like. Similarly, we write I−1(T)
for the “downward” inversion that moves the highest note one octave down, and I−k(T) the operation that
does this k times.

Suppose that for each chord T we let the possible inversions of the chord be I−K(T) . . . , I0(T), . . . IK(T)
for some fixed number K. The dynamic programming state space of the problem corresponds to an L×N
array of states where L = 2K +1 is the number of inversions. In this array, the element in the nth column
and kth row describes the possibility that we use the kth inversion for the nth triad. This is described by
the array

IK(T1) IK(T2) . . . IK(TN)
IK−1(T1) IK−1(T2) . . . IK−1(TN)

...
...

...
...

I1(T1) I1(T2) . . . I1(TN)
I0(T1) I0(T2) . . . I0(TN)

I−1(T1) I−1(T2) . . . I−1(TN)
...

...
...

...
I1−K(T1) I1−K(T2) . . . I1−K(TN)
I−K(T1) I−K(T2) . . . I−K(TN)

With the array described above, each state in the graph represents a particular voicing of a particular
chord. Thus, any path through this graph from the left edge to the right edge constitutes a possible voice

leading. We will describe a cost for each pair of chords in adjacent columns. Suppose that we consider
going from configuration A to configuration B where both A and B are collections of 3 pitches notes using
the MIDI numbering. In this case the lowest voice undergoes the transition A1 to B1, the middle voice
goes from A2 to B2, etc. We want to minimize the total amount of movement encountered between voices
while making this transition. Thus our cost, C will be

C(A,B) =
3∑

j=1

|Aj − Bj|

3.1. DYNAMIC PROGRAMMING 45

’G C E

C E G

E G C’ A C’ F’

F A C’

C F A

E G C’

C E G

’G C E

x

x

x x

x

x
39

9 3

3
27

27
39

39
27

27

3
27

30

6

6

3

3

0

0

0
Figure 3.3: The voice leading example of C Major, F Major, C Major� ��� ��� ��
	� �� ��� ��� ���� ���� ��� !" #$% &'()*+ ,-. /01 234 567

Figure 3.4: The voice leading produced by the DP algorithm. The chords that formed the input to the
program are labeled above the chords

If we let the cost of a path be the sum of the transition costs encountered along the path, then we are trying
to minimize the total movement in half steps traversed by the voices — this is we seek a “parsimonious”
voice leading. This is something we know how to minimize with DP.

It is possible to choose voice leadings that do not allow parallel fifths, octaves, or to impose other
constraints on our voice leading. For instance, if we wish to disallow parallel fifths we would modify the
transition cost to be

C(A,B) =

{ ∑3
j=1 |Aj − Bj| if A → B contains no parallel fifths or fourths

∞ otherwise

It is a simple matter to check for parallel intervals by exhaustively looking at all 9 pairs of diads from A
and B.

As a simple example, suppose our chord progression is C Major, F Major, C Major. We choose only 3
inversions for each triad so our picture does not become too messy — it is easy to handle any reasonable
number of possibilities on the computer. Thus our states will be (C,E,G), (E,G,C’), (’G,C,E) for the first
and last chords and (F,A,C’), (A,C’,F’), (C,F,A) for the middle chord, where C denotes middle C, C’ is
one octave above, and ’C is one octave below. Figure 3.3 shows the costs between each chord as the sum
of half steps traversed by each voice. Note that the we give infinite cost between the horizontal arcs which
each involve parallel fifths. The states contain a number in each box which is the optimal cost to that box.
It comes as no surprise that the state sequences (C,E,G), (C,F,A), (C,E,G) as well as (E,G,C’), (F,A,C’),
(E,G,C’) are both optimal sequences traversing only 6 half steps in total.

Figure 3.4 shows an example of the chord progression in “America the Beautiful” with the voice leading
given by dynamic programming. In this example we have added an additional penalty to keep the voices
from drifting too far from a reference pitch.

Finding Phrase Structure

The last example is, technically speaking, not really an example of dynamic programming, though it is
included in this section on DP examples since it is so close in spirit.

46 CHAPTER 3. MUSIC AS SEQUENCE

Consider the following table that lists a number of familiar simple folks songs, Christmas carols, and
popular music songs. For each piece of music the table includes the total number of measures, along with
a decomposition of the total number of measures into groups. Many of the pieces consist of a number of
measures that is a power of two: 23 = 8, 24 = 16, 25 = 32 This is typical when all groupings are diadic.
That is, if we have a two measure group, two of these groups form a phrase, two of these phrases form the
piece, then we have 2x2x2=8 measures. Clearly this happens frequently in this collection of simple pieces
of music, and in many kinds of music. This kind of grouping structure is common to all of the pieces in
the table with 2n measures.

Notice that some of the pieces have a number of measures that contains a factor of 3, such as “Down
in the Valley” and “The First Noel.” This can happen either because the piece is composed of groups
of 3 measures, as in “Down in the Valley,” or it can happen if the piece is composed of 3 phrases (or 3
somethings) as in “The First Noel.” Not all pieces have such regular phrase structure in which the measure
groupings are given by a product of simple factors. Consider, for example, “God Save the Queen.” This
piece begins with a phrase that is composed of 3 groups of 2 measures (2x3), then followed by a squarer
8 measures with diadic structure, 2x2x2. We will write the phrase structure for such a situation as 2x3
+ 2x2x2 where the ’+’ denotes the concatenation of not-necessarily-related pieces. “O Come, O Come
Emanuel” is a particularly interesting example of this, composed mostly of 3-bar groupings, but having a
contrasting diadic grouping structure for the text, “rejoice, rejoice, Emanuel,” which helps to highlight the
way this passage expresses a more declarative feeling than does the rest of the carol. Look through the
list and think about the phrase structure in some of the more unusual tunes such as “Scarborough Fair,”
“Shenandoah,” and “Yesterday.”

3.1. DYNAMIC PROGRAMMING 47

measures name “true” structure recognized structure

16 amazing grace 4x2x2 2x4x2
16 america the beautiful 4x2x2 4x4
8 auld lang syne 4x2 4x2
32 home on the range 4x2x2x2 4x4x2
16 away in a manger1 4x2x2 4x4
16 away in a manger2 4x2x2 4x4
16 danny boy 2x2x2x2 2x4x2
24 down in the valley 6x2x2 3x4x2
16 early one morning 4x2x2 8x2
16 edelweiss 4x2x2 4x4
24 first noel 2x2x2x3 4x6
14 god save the queen 2x3 + 2x2x2x2 2x7
16 greensleeves 4x2x2 8x2
16 in the bleak midwinter 2x2x2x2 2x4x2
16 it came upon a midnight clear 4x2x2 4x4
8 loch lomond 4x2 4x2
19 o come o come emanuel 3x2x2 + 2x2 + 3 3x4 + 2x2 + 3
16 o little town of bethlehem 4x2x2 4x4
8 red river valley 2x2x2 2x4
8 riddle song 2x2x2 2x4
16 rock a bye baby 2x2x2x2 4x4
14 sakura 2x2 + 2 + 2x2x2 2x7
18 scarbarough fair (5+7)x2 (5+4)x2
20 shenandoah (2x2 + 2 + 2x2)x2 2x5x2
16 simple gifts 2x2x2x2 82x
8 somewhere over the rainbow 2x2x2 4x2
24 sound of music 2x2x2x3 2x4x3
8 streets of laredo 2x2x2 8
8 swing low 2x2x2 2x4
18 today 2x2x2x2 + 2 6x3
16 vilja merry widow 2x2x2x2 4x4
12 waters of babylon 2x2x3 4x3
8 water is wide 2x2x2 2x4
22 yesterday 7+2x2x2+7 2+5x4

The problem we wish to consider now is how to compute this kind of deeper structure from the music
itself. In this problem we are given data files for each piece that represent the music as a list of notes with
some other annotations. In our representation, we are also given measure boundaries. The following is
an example of “Auld Lang Syne” as represented in our data set. For now we focus only on the first two
columns, which contain the note lengths and the pitches.

48 CHAPTER 3. MUSIC AS SEQUENCE

mode: major

time: 4/4

tempo: 1/4 = 100

trans: -8

1/4 g1 > . .

3/8 c2 * . I

1/8 b1 > .

1/4 c2 > .

1/4 e2 > .

3/8 d2 * . V

1/8 c2 > .

1/4 d2 > .

1/8 e2 > .

1/8 d2 > .

3/8 c2 * . I

1/8 c2 > .

1/4 e2 > .

1/4 g2 > .

3/4 a2 + . IV

1/4 a2 > #

3/8 g2 * . I

1/8 e2 > .

1/4 e2 > .

1/4 c2 > .

3/8 d2 * . V

1/8 c2 > .

1/4 d2 > .

1/8 e2 > .

1/8 d2 > .

3/8 c2 * . vi

1/8 a1 > .

1/4 a1 > . IV

1/4 g1 > .

4/4 c2) . I

We will describe a DP-like method for finding the best grouping structure for a piece based on this data.
However, before we can do this we need to think about the possible labellings for a collection of measures.
Understanding the way to generate the possible labeling will be the key to finding the optimal labeling.
For instance, imagine all the possible ways we could label a section of 4 measures. If we enumerate them

3.1. DYNAMIC PROGRAMMING 49

all we will get:

{4, 3 + 1, 2 + 2, 1 + 3, 2 × 2, (1 + 1) × 2, 1 + 1 + 2, 1 + 2 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1} (3.1)

Clearly there are quite a few of these and it will be difficult to find, say, all the possible ways of labeling
16 bars without a systematic approach. We will proceed by induction — if this term is not familiar, it is
best illustrated by example, rather than definition, so read on.

Imagine first that we have found all the ways of labeling a single bar. This is easy, since there is only
1 possible way: {1}. This is the basis for our induction. Now imagine we have found all ways of labeling
n − 1 bars (we have for n = 1). We describe how to construct all the possible labellings of n bars out of
what we already have. To do this there are only three types of possible labels:

1. We can label the n bars as a single unit: n.

2. We could try to label the bars as a product. So for each factor f of n (other than n and 1) we
compute labels of the form A × f = A,A, . . . , A

︸ ︷︷ ︸

f times

where A is a possible labeling of n/f bars.

3. For each j ∈ 1, . . . , n − 1 we could label the bars as A + B where A is a possible label of j bars and
B is a possible label of n − j bars.

For instance, suppose we have the possible labellings of

1 bar {1}

2 bars {2, 1 + 1}

3 bars {3, 1 + 2, 2 + 1, 1 + 1 + 1}

and from these we want to create the possible labellings of 4 bars. As described above, we have three types
of labellings: those coming from single labellings, products, and sums. So listing all possibilities when
n = 4 gives

1. One “whole” labeling: {4}

2. The one nontrivial factor of 4 is 2 so we get product labellings {2, 1 +1}⊗{2} = {2× 2, (1 +1)× 2}.

3. The sum labellings

(a) for j = 1 we get {1} ⊕ {3, 1 + 2, 2 + 1, 1 + 1 + 1} = {1 + 3, 1 + 1 + 2, 1 + 2 + 1, 1 + 1 + 1 + 1}
(b) for j = 2 we get {2, 1 + 1} ⊕ {2, 1 + 1} = {2 + 2, 2 + 1 + 1, 1 + 1 + 2, 1 + 1 + 1 + 1}
(c) for j = 3 we get {3, 1 + 2, 2 + 1, 1 + 1 + 1} ⊕ {1} = {3 + 1, 1 + 2 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1}

It is easy to see that any labeling with more than 2 +’s can appear in multiple ways, but it is easy to thin
out duplicate labellings as long as we have a way to generate them all. Observe that the labels of Eqn. 3.1
are exactly the same labellings as those generated by our 3-step procedure.

Now that we know how to generate all the possible labellings, let’s consider a method of scoring them
as to their musical plausibility for a particular piece of music. There is no single correct way to do this,
but I will propose something that is at least plausible. Suppose we denote the segment of measures
m,m + 1, . . . , n− 1 by (m,n). Note that this doesn’t actually include the nth measure, but goes up to the
barline of the nth measure. Now imagine we have already managed to score all shorter subsequences of
(m,n).

50 CHAPTER 3. MUSIC AS SEQUENCE

1. If we consider labeling (m,n) as a single phrase, S, we want score the plausibility that this sequence
of measures is a phrase. We expect to have long notes at the end of phrases so we will impose an
increasing penalty on the labeling as the longest note as the last measure becomes shorter. Thus
every time we label a segment (m,n) as a single phrase, we will impose the cost

C(S,m, n) = Hlong note(m,n)

2. We have a preference for labellings that do not involve lots of +’s. This is because it is unusual for
neighboring sections of music to be unrelated metrically, which is what is implied by the + operation.
So we will assign a fixed cost every time two sections are concatenated with +, as well as impose a
limit of at most 2 +’s for musical excerpt. This also will limit the rapid growth of possible labellings
as we consider longer and longer units. Thus if we create a label on (m,n) by concatenating labels
A on (m, j) and B on (j, n) where m < j < n, the score of this label will be

C(A + B,m, n) =

{

C(A,m, j) + C(B, j, n) + Hplus cost if A + B has less than 2 +’s

∞ otherwise

We wont bother adding labels with infinite cost to the list of possibilities.

3. If a label on (m,n) is composed by replicating the k-measure label A f times where f × k = n − m,
then

C(A × f,m, n) = C(A,m,m + k) + C(A,m + k,m + 2k) + . . . , C(A,n − k, n) + Hsimilarity

where Hsimilarity is a penalty that is larger the more the corresponding measures of music differ
from one another. The simplest approach might leave out this penalty all together, but a more
sophisticated view expects parallel elements of the same product to be have similar structures, either
in pitch, rhythm, or both.

Note that this construction of the cost follows closely the construction of the possible labels in an
inductive manner, building larger labels and costs out of shorter ones. That is, every time we create a new
label we do this by either labeling a section of measures as a single phrase, composing two neighboring
sections with ’+’, or composing a collection of of neighboring sections with ×. In each of these cases we
have described how to construct the cost of the new label, using the cost of the smaller labels.

Though we will not discuss the coding of this experiment, which is more complicated than our previous
R programs, we implemented this algorithm and ran it on the musical examples of the table given above.
The final column of this table is the recognized rhythmic structure.

In comparing this recognized structure with the neighboring column, one should consider the objective of
the algorithm more carefully. If no “dissimilarity” penalty is added when we consider the label (A,A . . . , A)
then we have no way of choosing between various factorizations, such as 2 × 4 and 2 × 2 × 2 that consider
similar representations of structure. When adding the dissimilarity penalty we encourage explanations
where the various examples of A in the product label (A,A,A . . . , A) are similar to one another. One can
argue if this is a good way to distinguish between such hypotheses, but it is the way we have proposed
here. Note that the ground truth structures supplied in the table don’t make such distinctions, since all
examples of 2n measures are expressed as 2 × 2 . . . × 2.

3.2 Hidden Markov Models

In the beginning of this course we used the “bag of notes” model to reach our conclusions about the music
under study. While clearly simplistic, we did find some useful applications of the approach. Last chapter
we saw the value of taking a sequence-based view of music. Here we continue with this idea, but now in a
probabilistic context.

3.2. HIDDEN MARKOV MODELS 51

3.2.1 Markov Chains

A Markov Chain is a sequence of random variables x1, x2, . . . taking values in some finite state space
Ω = {ω1, . . . , ωL} such that

p(xn|x1, . . . , xn−1) = p(xn|xn−1)

That is, each state depends only on the previous state. To make this definition more clear, consider the
case of four random variables x1, x2, x3, x4. No matter what kind of dependence these variables have, it is
always true that

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3)

We will show this later, however it is intuitively plausible as an extension of our definition for conditional
probability. If the variables are the first four variables of a Markov chain, then the third and fourth factors
simplify giving

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x2)p(x4|x3)

State Graph

Usually a Markov chain is depicted with a State Graph showing the states as nodes in a graph with directed
(with arrow) edges showing transition probabilities. The sum of the probabilities of all edges leaving a
state must be 1. If we denote sun by S and rain by R, a sequence generated by this Markov chain would
look like SSSSSRRRRRRRRRRRSSSSSSSRRRR

rain sun

.1

.1

.9 .9

Musical Examples

It is possible to create Markov chains that capture, to some extent, the tendencies of certain musical
sequences. For instance if think of the key label for each measure of a piece of music we might might model
this as a Markov chain with the following state graph. Here we only show the transitions from C, with
the expectation that the transitions out of the other keys would simply be “rotations” of the P (key|C)
distribution. In Figure 3.5 figure the darker lines indicate more likely transitions.

Another example is that of musical rhythm. We can represent musical rhythm by enumerating the
states as the possible places in the measure where a note can begin. For instance, we may do this in 3/4
time as Ω = {0/1, 1/8, 1/4, 3/8, 2/4, 5/8} if we believe the only possible note onset positions are at the

52 CHAPTER 3. MUSIC AS SEQUENCE

Bb

C
G

D

A

E

B
F#

Db

Ab

Eb

F

Figure 3.5: Typical key transitions from C major. Transitions from other keys could be modeled as
“translations” of this model.

3.2. HIDDEN MARKOV MODELS 53

eighth note divisions. This creates a little ambiguity, however, since by the transition 1/4 → 2/4 we could
mean that the note lasted for 1, 4, 7, 10, . . . quarter notes. We can resolve this by introducing the tie symbol
every time a note is tied over the bar line. Thus the rhythm of the fragment

would be notated unambiguously as

0/1 2/4 tie 1/4 5/8 0/1 2/4 tie 1/4 5/8 0/1 2/4 tie 1/4 5/8
1/4 2/4 3/4 tie 1/8 1/4 3/8 2/4 5/8

What would the transition probabilities be in this case? One might make generalizations such as

1. The “odd positions (1/8, 3/8, 5/8) tend to be followed by the next quarter note position

2. Ties are relatively rare

3. . . .

However, one of the virtues of the Markov model is we can assign transitions probabilities through param-
eter estimation. It will come as no surprise, given what we have seen that this amounts to counting. For
instance:

p̂(tie|2/4) =
#{i : xi = 2/4, xi+1 = tie}

#{i : xi = 2/4}
If we were to use the above sequence as our training data we see that the state 2/4 appears 5 times and in
4 of these cases it is followed by a tie. Thus p̂(tie|2/4) = 4/5.

Sound in R (chromatic wanderings.r)

There is a package in R that allows one to import and create sound files. The package works at the sample

level, meaning that R’s view of these sound files is not symbolic, but rather as a sequence of SR numbers
per second where typical sampling rates are SR = 8000, 16000, . . . This view of music is not the perspective
we take in this class, for the most part, however, it is useful for getting simple sound examples that convey
the results of our experiments. The tutorial on the web page shows how to install the TuneR sound
package, and how to get simple sounds out of it.

Using this package, we can create sound files that describe the results of Markov chains in action.
The following figure describes a simple Markov chain for creating a sequence of pitches. The chro-
matic wanderings.r program samples from this Markov chain and plays the sound file the results.

60 61 62 63 64 65

60 61 62 63 64 65

p p p p p p

ppppppp

p
q

q
q

q
q

q
q

q
q

q

54 CHAPTER 3. MUSIC AS SEQUENCE

Here the program is listed with comments

sr = 8000; # sampling rate used in playing function

tatum = .1; # the length of time (secs) of the smallest musical time unit

playit = function(f) { # this function plays a melody. the melody is expressed

using a midi pitch for each evenly spaced tatum value

no need to worry about how the function works.

h = NULL;

library(tuneR) # need to link with the sound library

bits = 16 # bit depth

f[f<1] = f[f<1] + 8

for (i in 1:length(f)) {

fr = 440*2^((f[i]-69)/12);

h = c(h,rep(fr,sr*tatum))

}

y = sin(2*pi*cumsum(h/sr))

u = Wave(2^(bits-4)*y, samp.rate = sr, bit=bits)

play(u,"play") # how to play it on Linux --- this will be different on different platforms

}

lo = 80; # the lowest possible midi pitch

hi = 100; # the highest possible midi pitch

p = .8 # prob of keeping same direction

notes = 50 # how many notes the model will generate

s = rep(0,notes);

s[1] = lo; # start at bottom of pitch range

up = 1 # start with upward chromatic direction

for (i in 2:notes) {

if (up) { s[i] = min(s[i-1]+1,hi); } # if up move upward if possible

else { s[i] = max(lo,s[i-1]-1); }

if (runif(1) > p) up = 1-up; # 1-p is prob of switching directions

}

playit(s) # play the notes

3.2. HIDDEN MARKOV MODELS 55

Factorization of Markov Chain (mc sim.r, markov train synth.r)

We denote the joint probability function for the 1st n states of the Markov chain to be p(x1, x2, . . . , xN).
We are interested in breaking this down to a simpler form. By our definition of conditional probability we
know that

p(A,B) = p(A)p(B|A)

We apply this rule twice to get to get

p(x1
︸︷︷︸

A

, x2, x3
︸ ︷︷ ︸

B

) = p(x1
︸︷︷︸

A

)p(x2, x3
︸ ︷︷ ︸

B

| x1
︸︷︷︸

A

) = p(x1)p(x2|x1), p(x3|x1, x2)

where in the last equation we applied the conditional probability rule to p(x2, x3|x1). Note that this
is simply a probability for both x2 and x3 so the usual rule for of p(x2, x3) = p(x2), p(x3|x2) becomes,
p(x2, x3|x1) = p(x2|x1)p(x3|x1, x2). If we apply this idea to longer strings of state variables we get, more
generally,

p(x1, x2, . . . , xN) = p(x1)p(x2|x1), p(x3|x1, x2) . . . p(xN |x1, x2, . . . , xN−1)

This is always true number what kind of distribution we have on the variables.
For a Markov chain, we have seen that only the most recent past is relevant so the above equation

simplifies to
p(x1, x2, . . . , xN) = p(x1)p(x2|x1), p(x3|x2) . . . p(xN |xN−1)

In a time homogeneous Markov chain, which we will study, one assumes that the same transition distribu-
tion, p(xn+1|xn) is used at all times n.

As a result of this, we see that in order to define a Markov chain we need

1. The initial distribution p(x1)

2. The transition probability matrix Q where Qij = p(xn+1 = ωj|xn = ωi)

For instance, in the “Rain and Sun” Markov chain introduced above, we would have two states Ω =
{ω1, ω2} = {Rain,Sun} where

Q =

(

Q11 Q12

Q21 Q22

)

=

(

p(ω1|ω1) p(ω2|ω1)
p(ω1|ω2) p(ω2|ω2)

)

=

(

.9 .1

.1 .9

)

The R example mc sim.r shows how to synthesize a chain from using a transition probability matrix.
With this level of abstraction the synthesis is completely generic and could be used for any transition
probability matrix, Q. The example markov train synth.r shows the training of Markov model for
rhythm from actual music data. The program then synthesis a random rhythm and plays it back using
the pitch of the note to denote different measure positions.

Higher Order Markov Models (markov 2nd order trans.r)

In many situations one can predict more about future states given knowledge of several of the most recent
states. For instance, consider the situation where we have data that looks like:

AABBAABBAABBAABB . . .

Imagine we learn transition probabilities from the training data. We would get, for instance,

p̂(A|A) =
times we observe AA

times we observe A
= 1/2

56 CHAPTER 3. MUSIC AS SEQUENCE

with the identical probabilities estimated for the other transitions so : p̂(A|A) = p̂(B|A) = p̂(A|B) =
p̂(B|B) = 1/2 This learned model tells us that p̂(A|B) = p̂(A|A) and that p̂(B|A) = p̂(B|B) so that the
knowledge of the current state tells us nothing about the next state. Thus, this Markov model believes
that we can best represent this sequence data as random flips of a coin. Clearly this doesn’t capture the
obvious cyclical patterns generated by the observed data.

Alternatively, we could model the state as two successive observations from the sequence. If we do
this we see that every time we observe AA it is followed by B and every time we see BA it is followed
by B. If we estimate the transition probabilities in this case we would view our sequence data as pairs of
overlapping observations: AA,AB,BB,BA,AA,AB,BB,BA, . . . Thus we would get

p̂(AB|AA) = 1

p̂(BB|AB) = 1

p̂(BA|BB) = 1

p̂(AA|BA) = 1

This model could be represented by the state graph

AA AB

BBBA

Clearly, this model captures the behavior of the data more accurately.

This idea can be extended to viewing the state as any number of consecutive observations. The number
of consecutive observations used is called the order of the model. It is interesting to note that, if we have
an unlimited supply of data, the model’s ability to capture the behavior of the data always improves as
we look at larger order models, as measured by nearly any reasonable measure of model performance.
However, when dealing with finite supplies of training data, as we always do in practice, this trade off is
considerably more complex. In a nutshell, the more parameters, or tweakable numbers of a model there are,
the more damage is done by the inevitable inaccuracies in learning these parameters. This often leads to
poorer model performance if the learning inaccuracy proves more important than the increased modeling
power.

The R example markov 2nd order trans.r continues the rhythm synthesis, this time using a 2nd
order Markov model. In a statistical sense the rhythms should be “more like” those demonstrated in the
training, though we may or may not perceive this in a musical sense. But, for instance, the model should
be capable of predicting future values with more accuracy.

3.2. HIDDEN MARKOV MODELS 57

Hidden Markov Models

Suppose we have a Markov chain, x = x1, x2, x3, . . ., but do not observe x directly. Instead, each time we
visit a state, the state “outputs” a random observation from some distribution associated with the state.

As an example, consider the following figure that describes an observed sequence of coin flips. In this
example there are two coins, a “fair” coin and an “unfair” coin. The fair coin gives equal probability to H
(heads) and T (tails), but the unfair coin gives probability .8 to H (and .2 to T). The coin flipper flips the
current coin and then makes a random choice of which coin to use next. In doing this, she stays with the
current coin with probability .9 and switches to the other coin with probability .1.

.9.9

.1

.1

H T TH

.5 .5 .2.8

fair unfair

An observed sequence from the coin may looking something like the following.

THHTHHTTHHTT
︸ ︷︷ ︸

fair?

HHHTHHTHHHHHHH
︸ ︷︷ ︸

unfair?

THTHHTH . . .
︸ ︷︷ ︸

fair?

In hidden Markov model problems (HMMs), the inference problem is usually to give meaning to the
observations by uncovering the sequence of hidden states. This meaning (here which coin is operating)
is annotated in the equation above for a particular sequence of flips — of course, we can’t know for sure
which coin was operating at any time, since the observed sequence is possible under any sequence of coins.

More formally, we assume that each observation, yn, depends only on the current state, xn. We will
write x and y for the entire sequences of states and observables: x = (x1, x2, . . . , xN), y = (y1, y2, . . . , yN).
Thus

p(y|x) = p(y1, . . . , yN |x1, . . . , xN)

= p(y1|x1, . . . , xN)p(y2|y1, x1, . . . , xN) . . . p(yN |y1, . . . , yN−1, x1, . . . , xN)

= p(y1|x1)p(y2|x2) . . . p(yN |xN)

Putting this together with the factorization of the Markov chain, x, gives

p(x, y) = p(x)p(y|x)

= p(x1)p(x2|x1)p(x3|x2) . . . p(xN |xN−1)

×p(y1|x1)p(y2|x2)p(y3|x3) . . . p(yN |xN)

= p(x1)p(y1|x1)
︸ ︷︷ ︸

f(x1)

p(x2|x1)p(y2|x2)
︸ ︷︷ ︸

f(x1,x2)

p(x3|x2)p(y3|x3)
︸ ︷︷ ︸

f(x2,x3)

. . . p(xN |xN−1)p(yN |xN)
︸ ︷︷ ︸

f(xN−1,xN)

Usually in an HMM the y’s are observed and hence are known to us. On the other hand, the x’s are
unobserved, and hence unknown. Thus, we can think of this factorization as a product of functions where

58 CHAPTER 3. MUSIC AS SEQUENCE

the first, f(x1), just depends on the first state variable, the 2nd, f(x1, x2), depends on the first two state
variables, the third, f(x2, x3), depends on the next two state variables, etc. This view of the factorization
will be important to us in what follows.

HMMs for Recognition (coin hmm.r)

Suppose we have an HMM, (x, y), with p(x, y) as before. We observe y = (y1, y2, . . . , yN) and want to find
the most likely state sequence given our observations. That is, we seek x̂ = (x̂1, x̂2, . . . , x̂N) where

x̂ = arg max
x

p(x|y)

Note that since p(x|y) = p(x,y)
p(y) and y is fixed, we have

x̂ = arg max
x

p(x|y)

= arg max
x

p(x, y)

= arg max
x1,...,xN

[p(x1)p(y1|x1)][p(x2|x1)p(y2|x2)] . . . [p(xN |xN−1)p(yN |xN)]

The important thing to notice about this factorization is that we express the quantity we want to
optimize, p(x, y), as a product of factors depending on consecutive variables from the chain (xn, xn+1).
This is ideal for maximizing using dynamic programming, as follows.

Suppose we observe an N -long sequence y1, . . . , yN and our state variables xn can take values in a
state space Ω = {ω1, . . . , ωL} having L different states. We create a trellis graph having N “levels” with L
possible states at each level — thus we can think of the trellis as an L × N array of states. We define the
initial score for the state l in layer n = 1 as p(x1 = ωl)p(y1|x1 = ωl). Then we define the transition score
for moving from state l at stage n − 1 to state l′ at stage n as p(xn = ωl′ |xn−1 = ωl)p(yn|xn = ωl′)

Suppose now that we take the score of an entire path through the lattice as the product of the scores
traversed along the arcs. (In the past we took the sum of arc scores, but this is just a minor difference).
Then for any path through the lattice, (that is, any N -long sequence of states), x1, x2, . . . , xN , the score
of this path is

p(x, y) = [p(x1)p(y1|x1)][p(x2|x1)p(y2|x2)] . . . [p(xN |xN−1)p(yN |xN)]

where each factor inside the brackets represents a transition score at the associated level of the trellis
graph. Thus we have constructed a weighted graph where, for each path x = x1, . . . , xN , the score of this
path is p(x, y). Since we can use dynamic programming to find the best scoring path through the trellis,
we will have also found the state sequence that maximizes p(x, y).

This is best illustrated in terms of an example, so let’s return to the simple HMM describing the fair
and biased coins. Suppose that we observe the sequence y = HTH . . . and consider Figure 3.6.

Note that the first flip is H, so the score for beginning in the fair state, F (moving from the start state
to F), will be p(F)p(H|F) while the score for beginning in the biased state (moving from the start state
to B) will be p(B)p(H|B). This reflects our prior probabilities for beginning in the two states, p(F) and
p(B), as well as the likelihood for observing our first flip, which was H, in the two states, p(H|F) and
p(H|B).

Then in the second level of the trellis there are four possible transitions to consider, F → F , F → B,
B → F ,B → F , each with a prior probability, p(F |F), p(B|F), p(F |B), p(B|B). Since our second observed
flip was T , we must also factor in the observation probability associated with the transitions. Thus, if we
move to state F (from either preceding state) the observation probability will be p(T |F) while if we move
to state B the probability will be p(T |B). These are exactly the transition scores that are indicated in the
Figure 3.6.

3.2. HIDDEN MARKOV MODELS 59

p(B)p(H|B)

p(F)p(H|F)

p(F|F)p(T|F)

p(B|B)p(H|B)

p(F|F)p(H|F)

p(B|B)p(T|B)

p(F|B)p(T|B)

p(B|F)p(T|B) p(B|F)p(H|B)

p(F|B)p(H|F)

...

...

F

B

T HHobservations:

Figure 3.6: The trellis for the coin-flipping HMM with fair and biased coins.

Finally, there is one more trellis level sketched for the 3rd observation, H. This follows exactly the
same pattern as we observed before except that our observation probabilities will be for H rather than T ,
as in the previous trellis level. Note that the product of all of the scores traversed along any path such
as x = BBBBBFFFFFBBBB . . . will be p(x, y). Thus, we can find the most likely sequence given our
observations using dynamic programming.

The dynamic programming is nearly identical to the way we originally introduced the idea. Here we
will use notation similar to when the concept of DP was first introduced in this chapter. The scores for
the initial state, F,B will be s1(F) = p(F)p(H|F) and s1(B) = p(B)p(H|B) as indicated in the figure. We
have also described the way we can construct transition scores, sn(F, F), sn(F,B), sn(B,F), sn(B,B) for
moving through the various state pairs on the nth level. Since there is only one possible path leading to the
states at the first level, we will define the optimal scores for these as m1(F) = s1(F) and m1(B) = s1(B).
But for subsequent levels we got the scores of the optimal paths as

mn(F) = max(mn−1(F)sn(F, F),mn−1(B)sn(B,F))

mn(B) = max(mn−1(F)sn(F,B),mn−1(B)sn(B,B))

Thus, mN (F) and mN (B) will be the scores of the optimal paths ending in F and B. If one of these
is larger than the other, it will be the optimal score through the graph which is the same as maxx p(x, y).
Of course, we are interested in finding the best sequence, not the probability it creates, so we need to
remember how we constructed the optimal score. To this end we simply need to remember which which
predecessor state creates the optimal score at level n. This is done exactly as before by remembering the
optimal predecessor to each trellis state.

The R program, coin hmm.r illustrates the algorithm for finding this optimal path (as well as simu-
lating data from an HMM). In this program our sequence of observed coin flips is y[1 : N], here represented
as 0 for H and 1 for T . The program constructs two N × 2 arrays called optscore and optpred where
optscore[n,l] is the best score to state l at stage n and optpred[n,l] is the best predecessor state of state
(n, l). (Here the trellis state of (n, l) means we are in state l ∈ {0, 1} in the nth stage). For both of these
arrays we take l=0 to mean the fair coin and l=1 to be the biased coin. The first line of the following
fragment initializes the scores at the first level of the trellis using the matrix R[s,y] as the probability

60 CHAPTER 3. MUSIC AS SEQUENCE

of observing value y while in state s. The collection of three nested loops then, for each level, looks at
each state. For this state we examine all possible predecessor and compute the score using each one. We
remember both the optimizing score as well as which predecessor gives the optimizing score. This sort of
fragment needs to be studied for a bit to understand, but it is straightforward implementation of the DP
algorithm presented above.

for (s in 1:L) optscore[s,1] = p[s]*R[s,y[1]]; # p(x_1 = s)p(y_1 | x_1= s)

for (n in 2:N) { # for each observation

for (s in 1:L) { # for each possible state

for (r in 1:L) { # for each possible predecessor state

z = optscore[r,n-1]*Q[r,s]*R[s,y[n]]; # optimal score if we come to s from r

if (z > optscore[s,n]) { # if best so far

optscore[s,n] = z;

optpred[s,n] = r;

}

}

}

optscore[,n] = optscore[,n] / sum(optscore[,n]) # rescale to avoid underflow

}

The traceback of the optimal path is identical to what we have seen before:

xhat[N] = which.max(optscore[,N]) # best final state

for (n in (N-1):1) xhat[n] = optpred[xhat[n+1],n+1]; # follow pointers back

Key Analysis with HMMs (key hmm.r)

A harmonic analysis, as we define it here, labels each unit of musical time, say measure, with a key or
(key,chord) pair. When we only try to label keys, then the idea is essentially to track key modulations
throughout the music under consideration. Labeling with (key,chord) pairs in which, say, the chords are the
seven basic triads built on the seven scale degrees, is a version of functional harmonic analysis, as practiced
by music theorists. Either of these harmonic analyses can be performed using any musical unit (measure,
beat, note etc.) as the unit to be labeled. In what follows we will give key labellings at the measure level,
though a modification in the homework you will perform chord analysis for music that remains in a single
key.

In discussing bag-of-notes models, we saw the difficulty in assigning a key independently to each measure
in a piece of music. In essence, what appear to be different keys when looking at isolated measures can
often be explained in terms of a single key when considering a larger context. For instance, imagine a
sequence of measures in which the notes of the odd measures are all notes of the C Major triad, while the
notes of the even measures all belong to the G Major triad. Labeling such music as an alternation between
keys would not be reasonable, though any reasonable isolated measure analysis would recognize the music
in this way. The idea we introduce here is to look for a reasonable sequence of keys, one for each measure,
that also explains the data well. Thus, as we have done elsewhere, we look for a key sequence that is both
plausible a priori and is also consistent with the observed pitch data.

How should a key sequence behave? Without training a transition model directly from data, one might
assume

1. Most often, keys tend to persist for long sequences of measures

2. When we modulate (change keys), it is often either up or down a perfect 5th

3.2. HIDDEN MARKOV MODELS 61

3. Some modulations are quite rare, such as to neighboring half step keys, or by augmented 4th.

4. Other keys are somewhere in between in terms of likelihood

These are the assumptions that were expressed in Figure 3.5 in which the key sequence is modeled as a
Markov chain. This model only considers major keys, though it is simple to extend it to include minor
keys also. We will continue with the Markov-chain-on-major-keys assumption here, while acknowledging
that it has certain weaknesses, such as not representing the high likelihood of ending up on the key where
one begins.

The Markov model on key tells us how to represent a priori key sequence probability:

p(x) = p(x1, . . . , xN) = p(x1)p(x2|x1) . . . p(xN |xN−1)

using the transition probability matrix implicit in Figure 3.5. Our next task is to represent the data model,
which describes the likelihood of the pitch data given a key sequence, x. To do this we assume that we
have a bag-of-notes model for the pitches in each key, k, with probabilities p(c|k) = p0(c−k) where c is the
pitch class and p0 is the C major distribution and the subtraction is taken modulo 12 (−3 mod 12 = 9).
Thus, if we let yn be the collection of pitch classes in the nth measure, we model

p(yn|xn) =
11∏

c=0

p0(c − k)#{yn=c}

where by #{yn = c} we mean the number of pitches in the nth measure belonging to pitch class c. This
is exactly the model we used before in performing piece-level key estimation written out more compactly.

We now can construct the trellis graph in which the cost of each path x1 . . . , xN in the trellis is the
product of arc scores it traverses. We have seen previously that if we let the score of the arc going from
key xn−1 in measure n − 1 to key xn in measure n as p(xn|xn−1)p(yn|xn) then the product of the arcs
traversed will be p(x, y) = p(x1, . . . , xN , y1, . . . , yN). We have also seen that maximizing p(x, y) when y is
observed is the same as finding the most likely sequence, x, given y. To do this, we must create 12 states
for the 12 possible keys at each of the N possible measures — a 12 × N array. Then we make the score
for going from key k in measure n − 1 to key k ′ in measure n equal to p(k′|k)p(yn|k′). We have indicated
this in the following figure, though we have not drawn all the arcs between successive levels of the trellis
for clarity’s sake.

62 CHAPTER 3. MUSIC AS SEQUENCE

C

C#

D

Eb

E

F

F#

G

Ab

A

Bb

B

n=1 n=2 n=3

p(E|D)p(y |D)

...

...

...

2

The program of key hmm.r is a straightforward implementation of dynamic programming for this
situation. The one small difference is that rather than maximizing the product of the arc scores along a
path, we use the fact that

log(p1 × . . . × pN) = log(p1) + . . . + log(pN)

This means that we can equivalently maximize the sum of the logs of the arc costs. This latter calculation
is better for computer arithmetic since there is no problem with underflow (the problem of representing
very small numbers), as there is with the straight product.

One can see from the examples in the key hmm.r that the program tends to recognize long sequences
of measures as single keys. Often this is appropriate and is a big improvement over our first attempt at
labeling key movement. The example of Figure 3.7 shows that this kind analysis has significant weaknesses
too. In this example we use the Chopin 9th Prelude in E Major, which is quite chromatic. The piece uses
a wide variety of chords, and many of the unusual chords are seen as different keys in the analysis. This
serves as motivation for the following section.

Functional Harmonic Analysis with HMMs

Functional Harmonic Analysis assigns a (key,chord) pair to every unit of music (measure, beat, note, etc.).
For this the key is defined as a tonic in {C,C], . . . , B} together with a mode in {Major,Minor}. We write
this as

Key ∈ {C,C], . . . , B} × {Major,Minor}

meaning that we take one from each of the two sets above. Of course it would be possible to allow a richer
collection of keys that distinguishes between enharmonic equivalents since as C] and D[— (a picky look
our favorite Raindrop Prelude might say that, since the piece is in D[Major, we should call the parallel

3.2. HIDDEN MARKOV MODELS 63

0 10 20 30 40

2
4

6
8

10
12

beat

key

eeeeeeeee

bbbbb

eee

cccccc

dd

b−

a−a−a−a−

eeee

a

f f f

b−

ggg

eeee

Figure 3.7: Key analysis of Chopin Prelude #9 at the beat level. “e-” means the key of E flat

64 CHAPTER 3. MUSIC AS SEQUENCE

minor of the middle section D[Minor which has B[[in the key signature). We may also allow a larger
collection of modes, though we will not do so here.

Regardless of the mode under consideration, we will take {I, II, III, IV, V, V I, V II} for the possible
chords meaning the triads built on the first, second, etc. scale degrees. In our notation we will use all
capital Roman numerals even for a minor triad. So, for instance, the I chord in C Major would be the triad
C,E,G, while the V chord in D Minor would be A,C],E (as a default we will use the “harmonic” minor
scale in constructing our minor key triads with the flat 6th and raised 7th scale degrees). It is possible to
create a much richer vocabulary or chord including dominant 7ths, Augmented 6ths, Neapolitan, and many
others. One could even regard certain common suspensions as chords (such as V 4−3) though a theorist
may not think of these as chords at all.

The goal of the analysis is to create a labeling of each musical unit with a (chord,key) pair. For example,
the labeling might look like:

898898:: ;;<< ==>>?9??9?@9@@9@ A9AA9AB9BB9BC9CC9CD9DD9D EEFF G9GG9GHH IIJJK9KK9KL9LL9L
MMMMNN
NN

OOOOOP
PPPPQ9Q9Q9QR9R9R9RS9S9S9SS9S9S9ST9T9T9TT9T9T9T

UUUUU
UU
VVVVV
VV
W9W9WW9W9WX9X9XX9X9XYYYYY
YZZZZZ
Z

[[[[[
[\\\\\
\

]9]9]]9]9]]9]9]^9^9^^9^9^^9^9^
_____`
````

aaaa bbbb cccc ddddeeee ffffgggg hhhh iiii

jjjkkk lll

3

etc.

G Major C MajorC Major

IV V VI II IV V I

There are some necessary issues we still must address to flesh out this model into a state where it
can actually be implemented. Since we will only show the results of this implementation (rather than its
coding), we will keep this discussion at a rather high level, focusing on ideas rather than details.

The data model, which describes the likelihood of the MIDI pitches in a measure, given the (key,chord)
pair, can be accomplished rather simply. A (key,chord) pair specifies both a scale and a triad from the
scale. For instance, (D Major, IV) specifies the D major scale: D,E, F ],G,A,B,C] and the triad G,B,D.
Every note that appears in the measure is now either

1. The tonic note

2. In the triad, but not the tonic

3. In the scale but not the triad

4. Outside the scale



3.2. HIDDEN MARKOV MODELS 65

We will assign four different probabilities to these four cases and represent the data model in terms of
these probabilities. That is, if yn is the nth measure,

p(yn|xn = (key, chord)) = p
#{yn=tonic}
tonic p

#{yn∈triad -tonic}
triad p

#{yn∈scale-triad}
scale p

#{yn 6∈scale}
else

To generate the Markov model on (key,chord) sequences, we assume that the key sequence is a simple
Markov chain just as before. As long as the key remains constant we can assume the the chord also follows
a Markov chain that is independent of the key we are in. This could be represented as something like:

I

III

IV

VI

VII

V

II

In this figure we have represented the likelihood of the transitions out of the I chord by the thickness
of the lines. Transitions would also need to be represented for the other chords, of course.

When we change from one key to another, we could choose the original chord from a fixed distribution
that would favor the more basic chords such as I and V .

While we have chosen to represent only a few chords for every key, the model has the ability to capture
notions such as secondary dominants, though perhaps not in the way a theorist might conceptualize them.
For instance, if we have the sequence of chords: C Major, G Major, A Minor, D Major, G Major, C Major,
this could be captured through the (key,chord) sequence: (C Major, I), (C Major, V), (C Major, VI), (G
Major, V), (G Major, I), (C Major, I).

The course web page has a link to several harmonic analysis examples that were computed using this
framework, represented as MIDI files. The midi files play the piano for the original music along with
a “droning” chord for each (key,chord) that is recognized. In addition, if you have a MIDI player that
supports text, such as a karaoke MIDI player, then the (key,chord) pairs will be written out when the
appear in the music. We will demonstrate this in class.

Rhythm Recognition with HMMs (rhythm hmm.r)

Score-writing programs allow a user to enter music by typing in notes, rhythms, and various other music
symbols, much like in a word processor. Some programs also allow the user to enter the music by playing

it on a MIDI keyboard attached to the computer. For users with good keyboard skills this can be a more
efficient way of entering music data — sometimes much more so. The MIDI data conveys pitch in an



66 CHAPTER 3. MUSIC AS SEQUENCE

14

16

18

20

22

24

26

28

4 4.5 5 5.5 6 6.5 7 7.5 8

se
cs

measures

0

0.5

1

1.5

2

2.5

0 0.125 0.25 0.375 0.5

se
cs

measures

Figure 3.8: The left panel shows musical time vs. real time for a performance of the opening of R.
Schumann’s 3rd Romance for oboe and piano. The right panel shows the notated musical length of
each note plotted vs. the note inter-onset intervals (IOIs). As the the vertical overlap of these categories
demonstrates, it can be quite difficult to “quantize” the actual timing to recover musical timing.

unambiguous manner (except for the spelling of notes), however the rhythmic interpretation of the MIDI
data is often highly ambiguous here.

We model the problem as follows. Suppose we are given a sequence of times at which note onsets
occur: t1, t2, . . . , tN , given in seconds. We wish to transcribe these data into rhythm, as one would notate
in a music score. In addition to the score-writing program scenario, this rhythm recognition problem also
comes up when one wishes to transcribe sampled audio into music notation. This “audio signal to score”
problem, though still in an early stage, could be useful when one wants to notate music that exists only

in audio form, or for which one doesn’t have a score. While this problem also requires us to identify note
events (pitches and times) from the audio, it involves rhythm recognition as well.

Why is this problem difficult? As with all music performance data, one shouldn’t expect strict adherence
to the formula presented in the musical score. Such metronomic data would neither be possible nor desirable
for a human to create. If the tempo of the piece is known, then each rhythmic interval (e.g. half note)
corresponds to an actual time between onsets. In this case one may try to quantize the data by rounding to
the nearest musical unit. One problem with this quantization approach is that we can always find a musical
unit that is as close as we like to the observed interval. For instance, if the tempo is 60 quarters per minute
and the inter-onset interval (IOI) is .531, a natural choice would be to call this IOI an eighth note. However,
if we were to classify the IOI as an eighth note tied to a 1/128th note this would correspond to .53125
secs. — in better agreement to the observed time. Furthermore, if we consider progressively more exotic
musical units we could come as close as we like to the observed IOI. Clearly this would be undesirable,
so the moral is that we care about more than representing the observed timing accurately. Labeling the
note as an eighth note is a simple explanation that describes the data reasonably well. It makes musical
sense to prefer simpler explanations over more complex ones, since more complicated rhythms involving
1/128th notes and other such oddities are quite rare. This is the idea of Ockham’s Razor which states
that simple hypotheses are, in general, preferable to complex ones, so our analysis should be biased toward

these simple explanations. One could formulate this idea from a statistical point of view in which a prior

distribution over musical time intervals, estimated from score data, would find simpler intervals more likely
than complex ones.

It is worth noting the the quantization problem may not be solvable by restricting one’s attention to
the simple musical note lengths. Figure 3.8 shows the musical timing for an excerpt from R. Schumann’s
3rd Romance for Oboe and Piano. In the figure, the left panel shows the musical time plotted vs. real



3.2. HIDDEN MARKOV MODELS 67

time, as we have seen in previous examples. The right panel of the figure plots the musical length of each
note, in measures, on the x-axis with the actual IOI, in seconds, on the y-axis. Thus, since the piece is
in 4/4 time, the collection of notes corresponding to the musical time of .125 are all eighth notes. It is
clear that there is considerable variation to the IOIs for each length category and, for example, that some
eighths are longer than some quarter notes. This example is not unusual for rubato playing and further
demonstrates the weakness of trying to assign rhythm by quantizing.

Before taking this problem further, we note some weaknesses with the formulation. Musical rhythm
is, of course, not just a function of timing, though timing is certainly central. Pitch figures into rhythm
perception in several ways. For instance, we are inclined to perceived certain kinds of pitch-related events
on strong metric positions, such as chord changes and simultaneities. In addition, we often use pitch in
assigning groupings in music. Thus, a similar pitch configuration heard at different places in a musical
excerpt is often perceived as occurring in the same position within the metric hierarchy. For instance, in
a sequence of rising 8 note arpeggios (think Bach C Major Prelude) we are strongly inclined to hear the
lowest notes of each grouping as in lying in the same metric place. We will not take advantage of this
pitch information in looking at rhythm recognition, though a more sophisticated analysis might do so. We
will also ignore the dynamic level of each onset, which may be part of perceived accent, also figuring into
perceived rhythm.

Still, there is quite a bit we can do with the musical element we do model — timing. Most importantly,
since we look at the entire sequence of note onset times, rather than isolated IOIs, we can model the
likelihood of certain rhythmic sequences. This is more powerful than isolated IOI recognition since context
is so important in expressing the plausibility of a rhythmic sequence.

We will model rhythm in the context of a known meter. Within this meter we will define a collection
of possible musical onset positions within the measure. For instance, if we believe we are in 4/4 time
and the only possible metric position lie on the eighth note positions then our state space would be
Ω = {0

1 , 1
8 , 1

4 , 3
8 , 1

2 , 5
8 , 3

4 , 7
8}. We will model the sequence of metric positions, x1, . . . , xN corresponding to

our observed times t1, . . . , tN as a Markov chain with state space Ω. This allows us to capture many short-
and long-range notions of musical rhythm, as follows.

We may believe that, in the music under consideration, syncopations are rare. Thus weak metric posi-
tions such as 3/8 will tend to be followed by neighboring stronger positions. We could capture this notion
by requiring the transition probabilities from 3/8 to favor 1/2 as the next metric position. Similarly we
may wish to discourage tying over the bar line and could reflect this in our choice of transition probabilities
by assuming a small probability for any any transition that moves over the barline while not “landing on”
the downbeat. Finally, we may have a state space Ω reflecting various possible subdivisions of the beat. For
instance, if we allow both triple and duple subdivision of the beat in 2/4 time, then our state space would
be Ω = {0

1 , 1
12 , 1

8 , 1
6 , 1

4 , 1
3 , 3

8 , 5
12} In such a situation it would be likely for the 2nd note of the first quarter

note triplet, 1/12, to be followedby another triplet position such as { 1
12 , 1

6 , 1
4 , 1

3 , 5
12 , 0

1}. The preceding ideas
could be used to further refine the likelihood of the next measure position with 1/12 quite unlikely, as a
tie over the bar line, and 1/6 more likely as the next triplet pulse.

Our knowledge about metric structure, as captured by a Markov model on Ω, also captures longer-
term musical information. For instance, we expect that long notes are more likely to occur at downbeats,
which is partly captured by discouraging ties across the bar line. Thus we are more likely to recognize
the occasional long note as on a downbeat or other strong metric position, when other interpretations are
consistent with the data. This embeds further musical knowledge into our model.

How do we set the transition probabilities for this model? Of course, we may wish to train the model
by observing actual transition counts from music data that is similar to the type we try to recognize. We
assume that, either by training or hand-specifying, we have a Markov model represented by the L × L
probability transition matrix, Q, when our state space, Ω, has L elements. We suppose we also have an
initial probability distribution p(ω) telling us the distribution from which we select our first metric position



68 CHAPTER 3. MUSIC AS SEQUENCE

x1.

Now we consider the problem of relating our observed times t1, . . . , tN to our unobserved state sequence
x1, . . . , xN . Suppose that our tempo, τ , is given in quarters per minute. If we have a transition from xn

to xn+1 with xn, xn+1 ∈ Ω, the elapsed musical time, E(xn, xn+1) would be

E(xn, xn+1) =

{

xn+1 − xn if xn+1 > xn

B/4 + xn+1 − xn otherwise

where B is the number of quarters per measure. Thus, in 3/4 time, E(1/4, 1/2) = 1/4 while E(1/2, 1/4) =
3/4 + 1/2 − 1/4 = 2/4. Now we would expect the transition xn, xn+1 to have an IOI, in seconds, of

µ(xn, xn+1, τ) =
4 × 60 × E(xn, xn+1)

τ

We don’t expect the associated IOI, tn+1 − tn, to be exactly µ(xn, xn+1, T ) seconds, of course, so we model
it as

tn+1 − tn ∼ N(µ(xn, xn+1, τ), σ2)

Thus we assume that each IOI is normally distributed with mean as predicted from the note length and
tempo, but with some random variation. We choose the normal distribution simply because it has been
already introduced and is familiar at this point. Better modeling choices might reflect asymmetries in note
length distribution (note stretches may be more common than “compressions”), We might also model the
notion that the observation variance, σ2, increases with note length rather than being constant.

What we have now is a hidden Markov model that relates the hidden Markov chain describing the
rhythmic interpretation we seek to the observed IOIs, yn = tn − tn−1. The R program rhythm hmm.r
carries out the usual dynamic programming recognition strategy on a time sequence from an actual per-
formance. In this example the transition probability matrix, Q, was assigned by hand for 4/4 music using
the guidelines discussed above.

As with our other HMM examples, we interpret the data as the most likely path through a trellis graph,
given our data. For the 4/4 case discussed above in which only notes lying on eighth note boundaries are
possible, the graph would look like that in Figure 3.9. The graph allows all possible connections between
adjacent trellis levels, meaning that any note position can be followed by any other. The score for moving
from state xn at onset n to state xn+1 at onset n+1 would be Q(xn, xn+1)×N(tn+1−tn;µ(xn, xn+1, τ), σ2),
as discussed above. Most importantly, the arc score tries to balance the faithfulness to the observed IOIs
with finding a reasonable rhythmic interpretation of what is played. In the implementation in the program
we have allowed σ2 to increase with the expected note length. Also, we estimate the overall tempo as the
ratio of the known number of beats to the overall time of the excerpt in minutes.

To get the performance data, we have used a program that allows a person to tap in a sequence of
times corresponding to a musical rhythm. An example of the output of the program using a sequence of
times for “Once in Royal David’s City” is given below. To make the raw data more intelligible, I have
printed out the IOIs (in seconds) divided by the tempo (in beats/sec) giving the IOIs in beats. In an ideal
scenario, these numbers would all be integers or “half integers.”



3.2. HIDDEN MARKOV MODELS 69

0/1

1/8

3/8

3/4

7/8

5/8

1/2

1/4

t1 t2 t3 tN
Figure 3.9: The trellis graph for rhythm recognition. The possible states of the graph correspond to
rhythmic position within a measure and are represented by rows of the figure. The first column gives the
states we may find the performance in for the first onset time, the 2nd column gives the states we may
find the performance in for the 2nd onset time, etc. We use dynamic programming to find the most likely
path through this trellis, with the arc scores as described.



70 CHAPTER 3. MUSIC AS SEQUENCE

2.1982301 2.1931416 2.9818584 0.9286504 0.8752212 0.8777655 0.9693584
1.0253319 1.8751106 1.9717920 2.0659292 2.1091814 3.1548673 0.8625000
0.9133850 0.8574115 0.9540929 1.0609513 4.2056416 2.0252212 2.1066372
3.0480088 0.9362832 0.8777680 0.9184735 0.9362832 0.9464602 2.1040904
1.9463496 1.9488938 2.1448034 2.8877162 0.9413742 0.8955727 0.8599608
0.9057471 1.0558654 4.3506612 1.8674830 2.1626055 3.0556416 1.0049804
1.9717895 2.0939210 4.3532054 1.9539848 1.9768831 2.9106118 0.8879501
0.9566346 0.8981118 0.8574166 1.1321903

The recognized sequence of measure positions is given by the our program as follows. In each pair of
rows the first is the numerators for a measure while the second is the denominators.



3.2. HIDDEN MARKOV MODELS 71

1 3
2 4

0 3 1 5 3 7
1 8 2 8 4 8

0 1 1 3
1 4 2 4

0 3 1 5 3 7
1 8 2 8 4 8

0 1 3
1 2 4

0 3 1 5 3 7
1 8 2 8 4 8

0 1 1 3
1 4 2 4

0 3 1 5 3 7
1 8 2 8 4 8

0 1 3
1 2 4

0 3 1 3
1 8 2 4

0 1 3
1 2 4

0 3 1 5 3 7
1 8 2 8 4 8

0
1

While this example was recognized completely correctly, it is perhaps not too surprising due to the way
in which the obvious quantization of the data is correct nearly all of the time. Many of the examples seem
to contain mistakes, however.

An interesting attribute of the program is its ability to put rhythms in reasonable places. For instance,
the song “Oh Hannukah, O Hannukah” begins with an eighth note upbeat. One could conceivably tran-
scribe the rhythm with this upbeat occurring at the start of the measure, effectively sliding the whole
transcription forward one eighth note. Our data (output) model makes no distinction between these two
interpretations, since it is based only on the musical note lengths and not where they appear in the mea-
sure. On the other hand, the prior model embodied by Q sees the syncopation-filled rhythm corresponding



72 CHAPTER 3. MUSIC AS SEQUENCE

to this incorrect interpretation as unlikely. This example is also shown below.

0.9955426 0.9518785 0.9737105 0.8820158 0.9955426 0.9256800 0.9213136
0.9082143 0.9999090 2.0085509 0.9518785 1.0654053 2.0347494 2.1308105
1.9255890 0.8732830 1.0217411 2.0303830 0.8863822 1.0086419 1.9037569
0.9562449 1.0173747 2.0129173 2.0522150 0.8907487 0.8820158 0.9475121
0.9999090 1.8469935 0.9300464 0.9911762 2.0216501 0.8252524 1.1396343
4.0913308

3 1 5 3 7
8 2 8 4 8

0 1 1 3 1 3 7
1 8 4 8 2 4 8

0 1 1 3 7
1 4 2 4 8

0 1 3 1 3 7
1 4 8 2 4 8

0 1 1 5 3 7
1 4 2 8 4 8

0 1 3 1 3 7
1 4 8 2 4 8

0 1
1 2

Pitch Spelling

Many have had the experience of reading a MIDI file into a score-writing program and finding that the
spellings of the notes chosen by the program are not the same as those chosen by the composer. This is not
terribly surprising since MIDI gives no way of distinguishing between enharmonic spellings, representing,
for instance, both middle C] and D[ as MIDI pitch 61. This seems like a reasonable choice on the part of
the MIDI designers since MIDI was never meant to serve as a music score representation. However, MIDI
has become a de facto standard, since it is, by far, the most common electronic score format. Thus one
occasionally faces the problem of constructing a musical score from a MIDI file.

Pitch spelling is the problem of making the appropriate choice of sharp, flat, natural, double sharp
or double flat when this “spelling” information is not available. One obvious use of the problem was
mentioned above, though, there is a pitch spelling component to any transcription problem including the



3.2. HIDDEN MARKOV MODELS 73

audio-to-score version. A pitch spelling algorithm may also be used like a regular text-based spell checker,
and could alert a user to possible wrong notes or questionable spelling choices.

A possible approach to pitch spelling problem is to cast it as a classification problem. For example,
given a MIDI 67 use the collection of neighboring pitches to decide if the note is G,F]] or A[[. There
is a big weakness with this kind of approach, however. There is a relatively simple logic that governs
the spelling pitches. If we understand how this logic works in the key of C Major, we should be equally
equipped in D[ Major. Treating the problem one of simple classification blurs this commonality. A better
approach builds some simple musical knowledge into the strategy.

The key to performing pitch spelling is to recognize a hidden tonal assumption that explains what we
see on the page. According to this assumption, each note of tonal music can be thought of as a scale degree
with possible modifications of ] and [ for some of the pitches, in the context of a key. For instance, in the
case of major mode, the possible scale degrees would be

∆major = {1̂, ]1̂, [2̂, 2̂, ]2̂, [3̂, 3̂, 4̂, ]4̂, [5̂, 5̂, ]5̂, [6̂, 6̂, ]6̂, [7̂, 7̂}

Observe that notes in the scale can only be represented as the corresponding scale degree in { 1̂, . . . , 7̂}.
Also observe that the out-of-scale notes each have only two possible enharmonic representations, such as
]1̂ and [2̂, corresponding, for example, to C] or D[ in the key of C Major.

When the key is known, there is a simple way to relate this scale degree to the actual pitch spelling. For
instance, suppose we are in E Major which has the scale: E,F],G],A,B,C],D]. If scale degree 2̂ occurs,
we would write the 2th note of the E major scale which is F]. If, instead, the scale degree is [ 2̂, then the ]
of the 2nd scale tone, F], is “undone” by the [ of [2̂, leaving us with simply F. On the other hand, if the
scale degree is ]2̂, we write F]] since the 2nd scale degree already has a sharp. (We write the double sharp
as ]] because we have no way to get the usual double sharp symbol in our document). Note that pitches
in the diatonic scale are only allowed a single spelling, so, for instance, C[ simply cannot exist in the key
of C Major since we do not have a scale degree [1̂. Whether or not [1̂ actually exists may be a subject of
debate, though we have chosen to model this as an impossibility.

The actual accidentals that appear in the page will depend, of course, on the notated key signature.
For instance, if our algorithm gives a note spelling as F], we only write the sharp if the key signature does
not already have F]. Similarly, we would use the \, ]] or [[ signs when we need to overrule something in
the key signature. Thus [2̂ with 4 sharps in the key signature would be written as F \.

The minor scale works in a similar fashion. Here we take the natural minor as the basic scale, which
uses the same scale tones as the relative major. For instance, A minor is the relative minor of C major
and both use the white keys of the keyboard. For the minor key we allow the scale degrees

∆minor = {1̂, ]1̂, [2̂, 2̂, 3̂, ]3̂, [4̂, 4̂, ]4̂, [5̂, 5̂, 6̂, ]6̂, 7̂, ]7̂}

In the natural minor the half steps occur at different positions in the scale, leading to a different collection
of scale degrees involving raised and lowered notes. However, in minor we have chosen not to allow
two situations that may be considered to “make sense,” accounting for the fact that |∆minor| = 15
|∆major| = 17 and In particular, we do not allow [7̂, since the 7th scale degree is already lowered in the

natural minor, nor do we allow [1̂, since the usual notational convention would be to avoid the flatted first
scale degree in either mode.

Our state space for each note, now including the key, can now be represented as

Ω = ∆major × {C,D[,D,E[,E,F,F],G, A[,A,B[,B}
⋃

∆minor × {A,B[,B,C,C],D,E[,E,F,F],G, G]}



74 CHAPTER 3. MUSIC AS SEQUENCE

where by this notation we mean that a state can be either one of the major scale degrees with one of the
listed major keys, or one of the minor scale degrees with one of the listed minor keys. In listing the major
and minor keys we have chosen the tonic names that lead to the key signatures with the fewest number
of sharps or flats in the key signature. It would be fine, in principle, to consider C] Minor and D[ minor
as two different keys, and enlarge the possible keys this way according the the “line of fifths” (as opposed
to the circle of fifths). However, our favorite example of the Chopin Raindrop Prelude is one of the many
cases in which the notationally-simpler key signature is preferred over the more logical and complex one.
That is, the middle section of the Raindrop Prelude is in the parallel minor of the basic key of D[ Major,
which might logically be called D[ minor, though it is notated instead as C] minor.

We consider now the situation in which we try to spell a single voice of music with MIDI pitches
m1, . . . ,mN . Our possible labellings are of the form x1, . . . , xN where xn ∈ Ω. We assign several simple
rules for computing the cost of a label sequence.

1. We only allow labelings that makes sense, implemented in the following way: If a label xn and its
corresponding MIDI pitch are inconsistent, the label gets a cost of ∞. For instance x = 2̂ is D in C
Minor and would only be consistent with mn if mn mod 12 = 2

2. If a label is consistent with the MIDI pitch we penalize the label as C1, C2, C3 or C4 as it is

(a) C1: in the tonic chord

(b) C2: not in the tonic chord but in the tonic scale

(c) C3: one of the “likely” accidentals of ]4̂ or [7̂ in major or ]7̂, ]6̂, or [2̂ in minor. For the major
key, these are the new accidentals that appear in the neighboring keys on the circle of fifths. The
choice of the favored minor accidentals is a little harder to justify in a principled way. We chose
]7̂ from the usually major dominant chord in a minor key, ]6̂ since it appears frequency in minor
due to the ambiguity of the scale, and [2̂ since it is more likely than ]1̂ from the Neapolitan
chord.

(d) C4: the remaining out-of-scale scale degrees.

These penalties will have C1 < C2 < C3 < C4. Thus we “like” hypotheses that see notes as in the
tonic chord and don’t like ones that see notes as out-of-scale, especially those from distant keys.

3. Changes between keys are only allowed at measure boundaries. Changes of key always assume a cost
C5.

4. We will reward transitions that move from scale degree ]n̂ to n̂ + 1 and similarly from [n̂ to n̂ − 1
with the obvious “wrap-around” interpretation of addition and subtraction. This reward will will be
−C6.

Observe that the cost of a label sequence x1, . . . , xN depends only on the adjacent label pairs

(x1, x2), (x2, x3), (x3, x4), . . . , (xN−1, xN )

thus the problem lends itself naturally to dynamic programming. We build the usual DP trellis by enu-
merating all of the possible states of Ω in a column with one column for each of the N midi pitches in the
excerpt. We find the best scoring path according to the usual DP recursion and trace back to find the best
state sequence.

The following examples make a couple of simple modifications on this basic algorithm. First, it is
wasteful to create states that are inconsistent with the current MIDI pitch since these states receive a
cost of ∞ and cannot possibly be chosen by the DP algorithm. We did not create such states. Also, in



3.2. HIDDEN MARKOV MODELS 75

the examples we treated the spelling of a single monophonic line with knowledge of the “accompaniment”
notes in the other parts. To incorporate this knowledge, we also scored each of the accompaniment notes
according to its lowest cost spelling in the key indicated by our state. That is, if we are in the key of C
Major and MIDI 61 appears, we would choose the lower of the two scores given by ]1̂ and [2̂.

The first example treats the first 50-or-so measures of the Mendelssohn violin concerto in E minor
(though the movement is in C Major). The spellings given by our algorithm are indicated in Figure 3.10
and are in complete agreement with our score. The second example is an excerpt from the first movement
of the same piece shown in Figure 3.11. This example shows a few mistakes marked as diamonds over
the incorrect spellings. While the mistakes are all flats chosen where sharps belong, not all of the flatted
scale degrees recognized by our algorithm are mistaken. The notes marked as F\ are, of course, mostly
recognized as [2̂ in E minor. While we don’t include the recognized keys here, it is worth mentioning that
they are not particularly accurate. Luckily, reasonable spellings from one key are often reasonable from a
nearby key, so the algorithm is not particularly sensitive to key mistakes.

Rhythm Recognition with Unknown Tempo (rhythm rec sim.r)

Our last version of rhythm recognition assumed that the tempo was known and constant. While this may
be a reasonable assumption in some cases, such as when the player’s goal is to communicate the rhythm
accurately and not to play expressively, it is certainly not reasonable in many musical scenarios. When
music data are sampled in vivo (a real musical setting) the tempo is generally unknown a priori and may
vary through the performance. This leads to what might be called a “chicken and egg” problem. That is

1. Without knowing the rhythmic values assigned to the notes, we will not know the number of beats
that elapse over any segment of the music. Thus, we cannot estimate the tempo without knowing
the rhythm.

2. Without knowing the tempo we cannot say how long any note (e.g. quarter, eighth, etc.) should
last. Thus, we cannot estimate the rhythm without knowing the tempo.

It seems that it is nearly impossible to separate rhythm and tempo estimation into two separate problems.
This doesn’t mean there is nothing we can do, however: clearly the human manages this problem without
a great deal of difficulty. The key here is not to look at rhythm and tempo as two separate problems, but
rather we estimate them simultaneously. To do this, we must first create a model that represents them
simultaneously.

We have already discussed the modeling of rhythmic sequences in our earlier attempt at rhythm recog-
nition. We will treat rhythm exactly as before, by assuming that our measure positions, x1, . . . , xN live in a
known collection of possible onset positions (in musical units), Ω = {ω1, . . . , ωL}. We model this sequence
as a Markov chain.

How to model the tempo? We will use a random walk model for tempo, which assumes that the sequence
of tempi, t1, t2, . . . , tN are modeled by

tn+1 = tn + en

where the increments {en} are assumed to be independent, small, and centered around 0. Essentially,
this model says the next tempo differs from the current one by something that is small. Thus, if let
P (en = 1) = P (en = −1) = 1/2 we would have a discrete random walk. However, we could also model the
increments by a continuous distribution such as en ∼ N(0, σ2). A random walk for tempo captures the
notation that the tempo could change at any time, but allows an unrealistic amount of tempo flexibility.
We use the model because it is simple to implement. To be specific, will assume there are a finite collection
of possible tempi represented in seconds/beat. One could think of these are corresponding to the markings
on an old-style metronome, listed here as {a1, a2, . . . , aK}. For instance these possible tempi could be



76 CHAPTER 3. MUSIC AS SEQUENCE

Figure 3.10: Pitch spelling for the opening of the 2nd movement of the Mendelssohn violin concerto.



3.2. HIDDEN MARKOV MODELS 77

Figure 3.11: Pitch spelling for an excerpt from the 1st movement of the Mendelssohn violin concerto.



78 CHAPTER 3. MUSIC AS SEQUENCE

{ .30
︸︷︷︸

fast

, .31, .32 . . . , 2.
︸︷︷︸

slow

}. Note that since the units are seconds per beat, the smaller numbers correspond

to the faster tempi. This range covers a wider range of tempi than one would likely face in any realistic
setting. We will model the tempo sequence {tn} by assuming that the tempo of the next note can be either
the most recent tempo or either of its neighbors (if they exist), all with equal probability. That is

P (tn+1 = ak′ |tn = ak) =







1/3 |k − k′| ≤ 1 and k 6∈ {1,K}
1/2 |k − k′| ≤ 1 and k ∈ {1,K}
0 otherwise

Since we won’t observe the tempo process directly, we don’t know what the values of t1, . . . , tN are.
But we can still relate these to the observed onset times as if they were known. We follow ideas from
our previous rhythm recognition experiments. Let E(xn, xn+1) be the elapse musical time in going from
measure position xn to xn+1. We have, from the previous discussion,

E(xn, xn+1) =

{

xn+1 − xn if xn+1 > xn

B/4 + xn+1 − xn if xn+1 < xn

This assumes, as before, that we do not allow notes to last longer than one measure, so that the note
lengths can be computed from the measure positions. (Of course, the basic unit we treat could be longer
than a measure if this assumption is not true).

For this model to be useful in recognition, we must relate hidden tempo and rhythm sequences to the
data we observe. We will denote the inter-onset times (IOIs) as y1, . . . , yN and model these as

yn ∼ N(µ = tnE(xn−1, xn), σ2)

Thus the mean or average value of an IOI is the time that would be predicted by knowing the tempo and
note length plus some some 0-mean normal random “error.”

Now we look at the problem of trying to recover the hidden sequence of states (tn, xn) pairs, from
our observed IOIs y1, . . . , yN . At first glance, it might appear that, due to the two-dimensional nature
of the hidden state, this model is fundamentally different than previous HMMs we have studied and not
amenable to the same types of recognition strategies. That the state is really made of two numbers need
not bother us. We simply enumerate the possible states as {ω1, . . . , ωL} × {a1, . . . , aK} and define the
appropriate transition probability matrix for these states. The discussion above implicitly assumes the
tempo and measure position processes are independent of one another, thus

P ((tn+1, xn+1)|(tn, xn)) = P (tn+1|tn)P (xn+1|xn)

The program rhythm rec sim.r performs rhythm recognition for this model. In substance, this
program is very close to ones we have studied earlier that compute most likely paths using dynamic
programming. The one wrinkle here is the two-dimensional state. We handle this here with a function
that convert converts a state in {1, . . . ,K×L} to its two dimensional (tn, rn) form, and another that moves
in the opposite direction. The program accomplishes the dynamic programming one the 1-d representation
and computes transition scores using the 2-d representation. In its current form, the program recognizes
data that is synthesized from the model, however it could easily be tested on real timing data.

Training HMMs with the Forward-Backward Algorithm

Imagine we have a simple HMM such as:



3.2. HIDDEN MARKOV MODELS 79

b

1010

a

y:

x:

and we wish to learn the transition probabilities and the output probabilities for the model. In the
usual HMM scenario we only observe the “output” of the model, y. However, for now assume that we
observe the hidden process, x, as well. One particular instance might look like:

x a a a a b b b a a a a b b b
y 1 1 0 1 0 0 0 0 1 1 1 0 0 1

In this case, it is natural to estimate the probabilities we want by simply counting. For instance,

p̂(a|b) =
#{Xn = b,Xn+1 = a}

#{Xn = b}

p̂(0|a) =
#{Xn = a, Yn = 1}

#{Xn = a}

or more generally,

Q̂ij =
#{Xn = i,Xn+1 = j}

#{Xn = i}

R̂ik =
#{Xn = i, Yn = k}

#{Xn = i}

Of course, we often don’t observe the X’s in practice, and, in fact, the hidden process is often fictional,
thus impossible to observe under any circumstances. A very simple way to deal with this situation is the
following simple algorithm:

1. Assign initial parameters to the model (transition and output probabilities)

2. Find the most likely state sequence, x̂, using dynamic programming

3. Use x̂ to reestimate the parameters by counting.

4. Go to 2.

Such an approach may work well if our initial guess is close to the “truth,” however, the algorithm
usually does not perform so well in practice. A better way is the Forward-Backward or Baum-Welch

algorithm. In the Forward-Backward algorithm, we estimate a soft labeling of the data, which gives the



80 CHAPTER 3. MUSIC AS SEQUENCE

probability of a particular hidden variable being in a certain state. The algorithm then iterates back and
forth between the estimation of model parameters and the soft labeling of the sequence.

More specifically, the algorithm replaces the actual counts in the above equations for Q̂ and R̂ with the
expected counts. That is

Q̂ij = p̂(Xn+1 = j|Xn = i)

=
E#{Xn = i,Xn+1 = j}

E#{Xn = i}

=

∑

n P (Xn+1 = j,Xn = i|Y = y)
∑

n P (Xn = i|Y = y)

and

R̂ik = p̂(Yn = k|Xn = i)

=
E#{Xn = i, Yn = k}

E#{Xn = i}

=

∑

n:yn=k P (Xn = i|Y = y)
∑

n P (Xn = i|Y = y)

Thus, if we can compute the probabilities state occupancy probabilities, P (Xn = i|Y = y) and the as
well as the probabilities P (Xn = i,Xn+1 = j|Y = y) we can implement the Forward-Backward algorithm
as

1. Initialize the transition probabilities and observations probabilities

2. Using the current model, compute P (Xn = i|y1, . . . yn) and P (Xn = i,Xn+1 = j|y1, . . . yn) with the
forward-backward probabilities. This will use our current estimates of Q and R.

3. Substitute these probabilities into the above formulas to reestimate Q and R.

4. Go to 2 and repeat until the nothing much changes.

All that is missing from the algorithm is the way to compute these probabilities. These come from the
following recursions. We define αn(i) = P (Xn = i|y1, . . . , yn), which can be computed by

α1(i) =
P (X1 = i)R(i, y1)

∑

j P (X1 = j)R(j, y1)

and

αn(i) =

∑

j αn−1(j)Q(j, i)R(i, yn)
∑

i′j αn−1(j)Q(j, i′)R(i′yn)

Similarly, βn(i) = P (yn+1, . . . , yN |Xn = i) can be computed by

βN (i) = 1

and

βn(i) =

∑

j βn+1(j)Q(i, j)R(j, yn+1)
∑

i′j βn+1(j)Q(i′, j)R(j, yn+1)

Using this quantities we can get

P (Xn = i|y1, . . . , yN ) =
αn(i)βn(i)

∑

j αn(j)βn(j)

and

P (Xn = i,Xn+1 = j|y1, . . . , yN ) =
αn(i)Q(i, j)βn+1(j)

∑

i′j′ αn(i′)Q(i′, j′)βn+1(j′)



3.2. HIDDEN MARKOV MODELS 81

3.2.2 Expressive Melody Synthesis

Musical expression is a deep subject, and one risks sounding rather foolish trying to address it in generalities.
However, if one wants to attack the expressive synthesis problem, this is exactly what must be done.
My personal belief is that, while it may not be obvious how to codify the patterns of expression into a
mathematical framework, there is quite a bit of logic in expression that remains to be discovered. The
approach presented here is an attempt to do just that.

There is no official taxonomy of expression, though one can identify at least three different aspects,

Conveying musical structure concerns showing the higher level structure of the piece, including phrase
boundaries. Often tempo changes are used to mark structural divisions.

Musical prosody is about showing note-level grouping and direction, analogous to prosody in speech.

Musical affect is the possibly changing mood of a piece: happy, sad, calm, agitated, etc.

Expressive synthesis is a subject that has a comparatively long history in music science, including several
decades of research. Most of this work is focused on piano music, since it is comparatively easy to represent
a piano performance. A common view of a piano performance corresponds the MIDI representation —
the onset time, offset time, and initial “velocity” of each note. Sometimes pedaling is also added to the
representation. Doubtless this representation misses some things — for instance, the resonating strings
of the piano interact with one another. Perhaps, more importantly, much of what the player does is
in response to that actual sound that is produced. Thus a MIDI performance on one piano may sound
quite different from that “same” performance on another piano. Thus one wonders how much is actually
captured by a MIDI representation. Still, the view is attractively simple, and allows one to get started
with the problem.

In contrast, I’ll talk here about expressive synthesis of melody. The most interesting context for melody
synthesis is with a “continuously controlled” instrument such as the voice. A continuously controlled
instrument allows one to vary many different “parameters” of the sound over time, such as loudness,
tone color, pitch, and noise content. Other aspects of expression can be derived from these more basic
parameters to produce timing, vibrato, articulation, glissando, and many other aspects.

A realistic look at a real instrument allows for so many parameters, the problem becomes needlessly
complex. Likely one doesn’t need all of these to create convincing musical expression. We will look at the
simplest possible view of a continuously controlled instrument — one that varies only pitch and intensity
over time. This is analogous to the theremin instrument discussed eariler in class, which modulates the
amplitude and frequency of a sine wave. This can be described mathematically as

s(t) = a(t) sin(

∫ t

0
2πf(t)τdτ)

The important thing to understand here is that the sound is specified entirely by the f(t) and a(t) functions.
We have seen that this instrument already is capable of considerable musical expression in the hands of a
theremin master. To make this model a little more interesting we will change the tone color of the sound,
making it brighter as the sound becomes louder. The physical way in which this is done is beyond the
scope of this class, though this is a natural thing to do since most acoustic instruments share this same
coupling of loudness and tone color.

What can our instrument do? Simply by using the changing frequency function, f(t), we are able to get
notes and rhythm. By varying the pitch over the duration of a single note we can get vibrato. Changing
the frequency quickly between pitches produces glissando. The intensity function can be used to create
the usual kinds of dynamics, but also articulations and other effects. See Figure 3.12 for examples.



82 CHAPTER 3. MUSIC AS SEQUENCE

f(t)

f(t) a(t)

a(t)
vibrato

notes/rhythm

pitch foreshadowing attack

dynamics

Figure 3.12: Examples of what can be accomplished with the theremin representation.

We will demonstrate the range of music inflection in class that can be acheived with our theremin-like
instrument. One thing that becomes obvious when one tries to create musical sounding performances by
maniplulating f(t) and a(t) is that not all notes can be treated the same. Any technique that handles
the notes in a uniform manner is bound to sound monotonous. To address this issue we introduce here af
representation of prosody that makes clear interpretive choices by labeling each melody note with a symbol
from a small alphabet,

A = {l−, l×, l+, l→, l←, l∗}

describing the role the note plays in the larger context. These labels, to some extent, borrow from the
familiar vocabulary of symbols musicians use to notate phrasing in printed music. The symbols {l−, l×, l+}
all denote stresses or points of “arrival.” The variety of stress symbols allows for some distinction among
the kinds of arrivals we can represent: l− is the most direct and assertive stress; l× is the “soft landing”
stress in which we relax into repose; l+ denotes a stress that continues forward in anticipation of future
unfolding, as with some phrases that end in the dominant chord. Examples of the use of these stresses,
as well as the other symbols are given in Figure 3.13. The symbols {l→, l∗} are used to represent notes
that move forward towards a future goal (stress). Thus these are usually shorter notes we “pass through”
without significant event, perhaps focussing the listener’s attention on what is coming. Of these, l→ denotes
the “garden-variety” passing note, while l∗ is reserved for the passing stress, as in a brief dissonance, or to
highlight a recurring beat-level emphasis, still within the context of forward motion. Finally, the l← symbol
denotes receding movement, as when a note is connected to the stress that precedes it. This commonly
occurs when relaxing out of a strong-beat dissonance en route to harmonic stability.

Examples of these labels for actual musical examples are given in Amazing Grace and Danny Boy in
Figure 3.13. We will show how, when these symbols are expressed using the f(t) and a(t) functions, we
can capture some of the desired prosody of the music.

Having found a way to represent one aspect of musical expression, we are on much more solid footing



3.2. HIDDEN MARKOV MODELS 83

Figure 3.13: Amazing Grace (top) and Danny Boy (bot) showing the note-level labeling of the music using
symbols from our alphabet.

forward stress receding

Figure 3.14: coming

for trying to synthesize the expression for a new piece of music. We cast the problem as one of estimating

the prosodic labeling — one symbol for each note. We will write this sequence of labels as x1, x2, . . . where
xn ∈ A. The important thing to notice here is that there is a pattern that governs the evolution of the
symbols. We tend to see sequences of forward moving notes, followed by a single stressed note, perhaps
followed by several receding notes, with this pattern repeating throughout the melody. This behavior is
illustrated in Figure 3.14. The state-like description of this patterns suggests modeling the sequence x as
a Markov chain, and this is exactly what we have done. But somehow the movement between the states
must depend on the musical score. We have modeled this by letting the probabilistic state transitions of x
depend on local measurements about the musical score, yn. These include aspects such as length of note,
strength of metric position, contour of pitchs, etc. We then model the conditional dependence of x on y as

p(x|y) = p(x1|y1)
N∏

n=2

p(xn|xn−1, yn, yn−1)

Without going into details, these transition probabilities are learned from a corpus of hand-labeled exam-
ples. We then compute the most likely state sequence, given the score features, using the usual ideas of
dynamic programming.

We will present a number of examples in class that show the results of this process.


