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Abstract

This paper discusses recent work in creating a computer program that plays the role of a
sensitive musical accompanist. An accompanist must synthesize a number of different sources
of information including a real-time analysis of the soloist’s acoustic signal, an understanding of
the timing relationships represented in the musical score, the interpretation of the soloist learned
through rehearsals, and musical constraints on the way in which the accompaniment can be played.
A probabilistic framework is presented in which all of these knowledge sources can be represented
and learned from actual data. This model then forms the basis of an approach to musical accom-
paniment using the machinery of Bayesian Belief Networks. A demonstration is provided from
J.S. Bach’s Cantata 12.

1 Introduction

Our objective is to build a system that provides musical accompaniment for a live player performing
a non-improvisatory composition for soloist and accompaniment. The input to the system comes
from a microphone focussed on the live player. The program performs a real-time analysis of
this signal and occasionally decides, in response to what it has “heard,” that it is time to play an
accompaniment note. When this happens MIDI message is sent to an electronic musical instrument
or sound module which performs the actual sound synthesis. This signal is then directed to an
amplifier which drives a loud speaker. When our efforts succeed, the accompaniment directed by
the program will actually respond to the soloist’s playing and will follow the soloist. Other efforts
in this area include [Dannenberg 84], [Bloch & Dannenberg 85|, [Dannenberg & Mukaino 88] and
[Vercoe & Puckette 85],[Vercoe 84]. A more complete account of this research is discussed in
the paper “A Probabilistic Expert System for Automatic Musical Accompaniment” available at
http://fafner.math.umass.edu.

Two processes: “Listen” and “Play” form the heart of our system. The Listen process uses a
hidden Markov model to track the evolution of the soloist’s position within the score; this work



is described in detail in [Raphael 99] and will not be discussed here. When the Listen process
determines that a solo note has occurred it communicates this information to the Play process;
these messages come with variable latency due to the degree of local ambiguity of the acoustic
signal. The task of the Play process is to play the accompaniment using the note onset times
provided by the Listen process, as well as several other knowledge sources. It is the Play process
that we discuss in this work.

What knowledge must an accompanist consider? Certainly we need the information prescribed
in the printed score such as the idealized pitches and relative note lengths as well as the real-time
analysis of the acoustic signal provided by Listen. However, the accompanist must consider more
than this. As the piece of music is rehearsed the soloist demonstrates a musical interpretation
and somehow the accompanist must learn and incorporate these ideas into its own playing. But
“copying” the soloist’s interpretation, by itself, is not enough. The accompanist must have its own
musical agenda if the accompaniment is to be musically satisfying.

While all of these knowledge sources must be simultaneously considered in performing the ac-
companiment, there is an additional constraint our system must respect Since musical performance
is inherently a real-time process, our system must also function in real time. This means that,
whatever methods, models, and algorithms are employed, they must be designed with computa-
tional feasibility in mind.

2 A Probabilistic Model

We develop here a model that captures fundamental aspects of the time evolution of the solo and
accompaniment parts as well as their interaction. Our current treatment does not model dynamics,
(i.e. loudness information), however our model could be extended to include this facet of musical
performance. Our model is given as a joint probability distribution on a collection of hundreds of
random variables, which represent tangible aspects of musical performance such as local tempo and
note onset time for both parts. Some of these are directly observable, e.g. measured onset time,
and some are not, e.g. local tempo. One cannot reasonably expect to represent and train such
a distribution without making assumptions that simplify the structure of the joint distribution.
We will make a number of musically informed conditional independence assumptions that limit
the degree of interaction among the random variables we model. In particular, we represent our
probabilistic model as a distribution on a directed acyclic graph (DAG), thus explicitly modeling
the dependency among the variables. Having done this, our model is amenable to the techniques
of Bayesian Belief Networks (BBNs). We further assume that all of the variables in our model are
jointly Gaussian; this modeling assumption is necessary to ensure the computationally feasibility of
our method. In particular, we will show in Section 3 how the BBN machinery forms the backbone
of our real-time playing algorithm, as well as the learning algorithm of Section 4.

2.1 The Solo Model

Here we propose a simple random model that expresses the evolution of a generic solo part. In
particular, we wish to develop a model that describes the joint distribution on the actual times at
which the solo notes occur as well as an evolving “tempo process.”

Suppose our solo part is composed of a sequence of N + 1 notes and rests comprising what we
will call the “solo events.” The solo events have written lengths ly, ..., In; we express these written
lengths in terms of measures, so, for example, a quarter note in 6/8 time would have a length of



1/3. Let the vector (t,, s,)! represent the “state” of the n'® event where t,, is the event’s onset
time, in seconds, and s, is the event’s local tempo, expressed in seconds per measure. Consider
the model that describes the evolution of these state vectors,

tn 1 I,— th Tn
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for n = 1,...,N where 71,...,7, 1 and o1,...,0, 1 are random variables. If the {(7,,0,)'}
vectors are removed from Eqn. 1, then the tempo process is constant, sg = s1 = ... = sy, and the
note durations, {t,+1 — t,} are proportional to the written note lengths {l,} as in a march. The
inclusion of these random vectors allows two kinds of flexibility into our model. A positive value of
0, means that the measure size is increasing at the nt® note, hence we have a local ritardando or a
slowing down of the tempo. A negative value corresponds to a decrease in measure size signifying
a local accelerando or speeding up of the tempo . A positive value of 7,, describes a place in which
the actual note length is longer than would be predicted by the local measure size, s,, yet no
tempo change occurs. In musical terms this would be a stretch or agagic accent. Similarly, a
negative value of 7, would compress a note.
Our model is expressed more compactly and more completely as
',L_solo Aiolol ',L_:Lolol + é-solo (2)
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forn=1,...,N where

gole = ( g ) (5)

and where z{°!° and £§°°, . . ., £5¢!° are mutually independent Gaussian random vectors with

m(s)olo ~ N(M(SJOIO, 23010) (6)
and

5;010 ~ N(y’i,OlO’ 2;010) (7)
n=1,...,N. Learning the soloist’s interpretation will be formulated as parameter estimation for

the {usol°, ¥s°l°} parameters in Section 4.

2.2 Incorporating the Observations

Recall that the “Listen” process analyzes the acoustic signal generated by the soloist and generates
a sequence of real numbers corresponding to the estimated onset times for the solo notes. We now

notate these by wgbs, R m}’\}’s, where mgbs is the estimated onset time for the n*® solo note. How
do these times relate to the idealized state process :c?)°1°, cen, a:ﬁfl"l? Our model assumes that
mcr)bbs — A(T)Lbswiolo + é-gbs (8)
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where

a==(10)
and

€5 ~ N(0,05%)
with £8P, . .., £3P° mutually independent and independent of zi°!® and £5°%°, . . ., £59%° as well. Thus,
the xng, cen, w?\}’s are “noisy” observations of the idealized note onset times %g,...,tn. There are

at least two factors that contribute to the discrepancy between ¢, and z°P. First of all, our
measurement process is imperfect due to quantization errors and occasional misfirings of the
Listen process. Second, there is always a certain amount of imprecision in the playing of a musical
instrument, so we might assume that the ideally desired times are never perfectly realized. These
effects are summarized in the distributions of the {£2°}. The dependence of the observation
variance on n is meant to account for the variable performance of the Listen process. This is
because the detection of some events, such as rearticulations and rest onsets are more error prone
than others. It seems reasonable to assume there is no systematic bias to these errors, hence the

{€3P%} are assumed to be 0 mean.

2.3 Representing Probabilities on Graphs

Let G = (T, A) be a directed acyclic graph (DAG) where I is a collection of graph nodes and A is a
collection of directed edges. Let x be a random vector that is partitioned so that each component
of z is associated with a node, v € T. If A C T, we write A for the random vector composed of
components of z associated with members of A. By convention, we write z. instead of the more
correct T,y and we write zr instead of x when we wish to emphasize that we are referring to the
entire collection of random variables.

A probability distribution for z = xr admits recursive factorization with respect to G if it has
a density, f(x), that can be represented as

f(z) = H f7($7|mpa(v)) (9)

y€el

where the parents of z,, pa(z,), are nodes in I' that have edges leading to v and f, is the
conditional density for z, given its parents zp,(,) [Lauritzen 96]. For our case we assume

Ty = AyZpa(y) T & (10)

where the {¢,} are independent random vectors with £, ~ N (., X,) and the {A,}, {u,}, and {34}
are chosen to replicate the conditional distribution f,(%,|%pa(y))- Thus zr has a joint Gaussian
distribution.

As an example, the joint distribution of {zf°'°,...,z5¢'°} and {xz$,..., 2"}, was defined
through Eqgns. 2 and 8, both of the same form as Eqn. 10. Thus the joint distribution of these
random variables respects the graph of Fig. 1 with the indicated association between random
variables and nodes. In this graph every node, except the node corresponding to :1:3°1° has a single
“parent” node.

2.4 Adding the Accompaniment

Here we outline our representation of the conditional distribution of the accompaniment variables
given the solo variables. Rather than completely specifying this conditional distribution, (which
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Figure 1: A graphical representation of the joint distribution on ... 2% and z5%. .., z%". The
horizontal placement of nodes is proportional to their onset times in musical time (measures). We
follow this convention in all subsequent graphs.
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Figure 2: Top: A musical example in which each accompaniment event is coincident with a solo event.
Bottom: A graphical representation of the conditional dependency structure

we eventually intend to learn from examples in future work), we focus here on the conditional
independence assumptions we build into the model. As before, these can be expressed through a
graph structure.

The prevailing musical wisdom tells us that the accompanist should “follow” the soloist, al-
though, of course, the reality is much more complicated. In practice the role of leader can be
exchanged freely the course of the piece. Furthermore, there are times when a musician’s role can-
not accurately be characterized as follower or leader. Still the view of soloist as leader is certainly
a reasonable one much of the time, and we feel that this notion must figure into the probabilistic
modeling of the relationship between solo and accompaniment.

How do we model this notion probabilistically? Consider the musical example in the top of
Figure 2. In this example each accompaniment event occurs at the same musical time as a solo
event; all things being equal, we would like these coincident notes to occur at the same actual
time. We have learned from experience, however, that the accompaniment must take more than
synchronicity into account if it is to be musically satisfying. In particular, the accompaniment
must have a disposition or tendency that guides it toward a musically plausible performance. For
instance, tempo changes over fast notes should, in general, be gradual. Without such musical
constraints the accompaniment sounds chaotic and confusing. The two objectives of synchronicity
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Figure 3: Top: A musical excerpt beginning with four accompaniment events evenly spaced over the
first solo note. Bottom: Our graphical representation of the dependency structure.

and internal consistency are occasionally in opposition to one another. Our goal is to mediate
between between these two competing objectives.

Consider a situation in which each accompaniment event is coincident with a solo event and
denote the solo and accompaniment state process by a:f]°1°, e a:%?h and z3°, ..., z%;°. We model
the asymmetric roles of the two parts in the following way. We assume that the solo part evolves
according to the model of Eqn. 2 where each solo state depends probabilistically only on the
preceding solo state. In contrast, we assume that each accompaniment state depends not only
on the previous accompaniment state (internal consistency), but also on the concurrent solo state
(synchronicity). This dependency structure is illustrated by the graph in the bottom of Figure
2. One might say that the solo process evolves as if it doesn’t “hear” the accompaniment, but
accompaniment does “hear” the soloist. This is how we model the notion of “following.”

Now consider the musical situation in the top of Figure 3 in which there are several accompa-
niment events between a pair of accompaniment events that coincide with the solo notes marked
A and B. We model this situation as in the bottom panel of Fig. 3 in which we make explicit the
dependence of z¢ on both x4 and zp.

These ideas form the basis of our modeling of the accompaniment variables. A complete graph
showing the dependency structure on all of the variables of our model is shown in Figure 4. In
this figure the top and bottom layers of random variables correspond to the estimated note onsets
times provided by listen and the actual accompaniment event times. The accompaniment event
times, which we denote by z8",...,z$s*, depend deterministically on their parent nodes. These



two layers are the only directly observable variables in our model. the remaining nodes comprise a
collection of hidden variables that explain the dependency structure between these two observable
layers.

3 Playing the Accompaniment

Our method for playing the accompaniment is, in principle, quite simple. At any time, ¢, during the

performance we know the estimated solo event times already detected by Listen: angs, ceey a:g?f)
and the accompaniment events already played: zd",.. .,a:gf(tt). Figure 5 shows these currently

observed variables with solid circles, while the currently unobserved vectors are represented with
open circles. Given this information, we can compute the conditional distribution on the time of
the next unplayed accompaniment event a:;’:L‘(tt) +1- Note that this distribution is influenced by all of
the knowledge sources previously mentioned: the written note lengths of the score, the rhythmic
interpretation of the soloist, the estimated onset times from Listen, and the musical constraints

modeled by the practice room distribution. We then schedule mfr':(tt) 41 for a time that is consistent

with this distribution. An obvious choice would schedule z°%“

m()+1 to sound at the conditional
mean of this distribution. This scheduling computation takes place every time we receive new
information, i.e. every time Listen detects an event and every time an accompaniment event is
played. In the case of a solo event detection, this amounts to rescheduling the currently pending
accompaniment event; in the case of a played accompaniment event, this amounts to initializing
the next accompaniment note event.

In light of the above, the description of our playing algorithm will be complete once we
have described a means of computing posterior distributions on model variables, given the ob-
servation of other model variables. The literature on Bayesian Belief Networks, for example
[Spiegelhalter et. al. 93], [Lauritzen 96|, [Jensen 96|, addresses this problem thoroughly and we
utilize that theory here. In particular we incorporate Lauritzen’s specialization of the BBN theory
to the case of Gaussian distributions [Lauritzen 92]. We do not discuss this computation here,
except to mention that it is accomplished through the “message passing” algorithm and note that
the computations involved are feasible in real time.

4 Training the Model

A basic tenet of our approach holds that, for our accompaniment, as with human musicians,
rehearsal is indispensable to successful performance. In the rehearsal phase the accompaniment will
learn aspects of the soloist’s interpretation whose knowledge is essential to satisfying interaction
between soloist and accompaniment. We discuss here a fully automatic method for learning the
parameters that model this interaction using the EM algorithm; EM is an iterative technique that
estimates model parameters by incrementally improving the likelihood of the observed data under
the model parameters. The basic idea we use for training our BBN is thoroughly developed for
the case of discrete variables in [Lauritzen 95|, and is briefly sketched for the joint Gaussian case
which applies to our situation.

The probabilistic model for the entire collection of random variables, zr, presented in Section
2 is described in terms of a large number of independent random vectors, {{,}, whose distributions
characterize aspects of the joint distribution on zp. In principle, our training procedure can be
employed to estimate any or all of the parameters governing the {{,} vectors. In practice, we
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Figure 4: Top: The opening measures of the Sinfonia from J.S. Bach’s Cantata 12. Bottom: The
graph corresponding to the first 7/8 of the first measure for this music. The nodes in the 1st (top)
layer correspond to the estimated solo note times that come from the Listen process ; the 2nd layer
represents the solo process; the 3rd layer represents the phantom nodes (not discussed here); the
4th layer represents the coincident accompaniment nodes; the 5th layer represents the nodes that are
“sandwiched” between coincident accompaniment nodes; the 6th (bottom) layer represents the actual
accompaniment note times.
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Figure 5: The graph corresponding to the opening notes of the Bach Cantata shown in Figure 4. The
solid circles represent random vectors that have been observed at the current time, while the open
circles represent currently unobserved random vectors.



simplify matters by focusing our training on a subset of these parameters as in Section 5, in which
we consider only the training of the {¢5°'°} parameters. To this end let &, = (&,---,&,) be
the independent vectors whose distributions we wish to learn — the “learnable” vector. Suppose

that these distributions have parameters u1,...,up and 31,...,Xp, known collectively as 6. Let
zo be the vector of variables that we can observe directly — the “observable” vector. For the
situation discussed in Section 5, &, will be composed of the vectors z{°!°, £&5°%°, ... €52 and zo
will be composed of the mgbs, cen m}’\}’s vectors.

Our training is based on the following observation. Given an assignment of values to 6 and
a realization of the observable vector, zp = «, the posterior distribution on all model variables
is computable via the message passing algorithm. If we regard the posterior mean of ¢, as an
estimate of {;,, and we had multiple such estimates from independent rehearsals, we could use them
to reestimate the parameters §. This is the essence of the EM algorithm. The actual updating
scheme is as follows. .

Let m{, and S, be the posterior mean and variance of ¢, given Ty = ol (i.e. given the jth
rehearsal) for j = 1,...,J and p = 1,..., P; mj and S, will be computed as a byproduct of the
message passing algorithm. The updating of the EM algorithm reduces in our case to

J
e = L5 g
j=1
ymew _ 1 J g gt new , new’
P _Sp+jzmpmp T Hp Hp
j=1
for p = 1,...,P. This updating scheme is iterated and is guaranteed to converge to a local

maximum of the data likelihood function.

5 Demonstration

We demonstrate here experiments performed with the Sinfonia from J.S. Bach’s Cantata 12:
“Weinen, Klagen, Sorgen, Zagen” (“Weeping, Crying, Sorrowing, Sighing”) whose opening bar is
shown in Figure 4 (Top). The movement is scored for solo oboe, violins, violas, and continuo,
although we have transcribed it for oboe and “piano.” The latter is, of course, not a real piano,
but rather the output of an Alesis QSR tone generator driven through the standard MIDI (Musical
Instrument Digital Interface) protocol. In this, and all of our examples, we prefer to score our
accompaniment for percussion instruments, such as the piano, or plucked string instruments,
such as the harp. For such instruments, the evolution of a note is largely deterministic between
its inception and its end (either by damping or natural decay). Perhaps for this reason, these
instruments are easier to synthesize and their artificial counterparts sound more like the real
instruments. But also, we prefer to work with instruments whose expressive power can be harnessed
by controlling only the onset times, initial “velocities” and end times of each note, since these are
the only parameters we currently use in the accompaniment’s performance.

We have developed a simple “mark-up” language for representing the musical score. In this
language we represent the pitches and musical lengths of all notes, both solo and accompaniment,
as well as any other information we wish to explicitly include in the performance. In our current
example, the accompaniment dynamics are deterministically set using our mark-up language using
terraced dynamics, crescendi, and diminuendi. Thus, at present, the dynamics are constant over
different performances.
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The accompaniment’s conditional distribution given the solo part is also entered directly. In
the present example, we have set the parameters of the conditional distribution to parsimoniously
control the accompaniment’s rhythmic flexibility. We arrived at our eventual settings through trial
and error and have no reason to suppose that these parameters are set optimally. Although we
have not done so yet, we propose to learn from examples the distribution governing both rhythmic
nuance and dynamics for the accompaniment part in future work.

Most onset times of the solo process can be fairly accurately predicted from past history,

however, others cannot. For example, it is virtually impossible to estimate when the first solo note
will begin if there is no introduction from the accompaniment; nor could one anticipate the time
the soloist will resume after a fermata or hold. Musicians deal with these situations by giving
visual cues to one another, however such information is not available to our program since we only
use audio input. To address this problem, we divide the score up into a sequence of “phrases.” The
playing of each of the phrases progresses exactly as described in Section 3. However, when we come
to the end of a phrase, the next phrase is not begun until the first solo note in the new phrase has
been detected. If this solo note coincides with an accompaniment event, then the accompaniment
event will always be late since the solo note cannot be detected until after it has begun. This error
might or might not be musically significant, depending on the magnitude of the error and the
musical context, but we feel it is unavoidable without some other input from the soloist. From the
standpoint of our probabilistic modeling, the phrases are regarded as independent random vectors.
Thus there is no “connection” between adjacent solo notes that overlap a phrase boundary and
the initial solo state of the phrase is an independent variable, as is x3°1° in our model. In the
current example, we divided the score into four phrases.
The solo parameters, {u°°} and {5°!°}, for each of these phrases are learned during a rehearsal
phase. During this phase the player chooses a section of music, typically a single phrase, and
performs the solo part to this section along with the accompaniment as played by the program.
The player’s acoustic signal is then reanalyzed off-line to estimate the times of the solo events
more accurately and this information is saved. We then run the training algorithm using this, and
all previous rehearsals, to update the solo parameters and the process is iterated. The rehearsal
phrase then progresses much as it does between humans with the soloist setting an example and
the accompanist learning what must be done to accommodate that example while maintaining a
sense of internal musicality. The first several rehearsals are usually a little rough as the soloist
must struggle to be true to his or her own musical ideals while not being distracted by a somewhat
quirky accompaniment. But the accompaniment settles in quickly and begins to produce some
musically satisfying results after only a few iterations.

Measuring the performance of an accompaniment system such as ours presents difficulties due
to the many different criteria one might employ. The accompanist has primarily two simultaneous
objectives: Playing musically and synchronizing with the soloist. While measuring success in the
first objective is subjective, we can quantify the accuracy in synchronization. Figure 6 shows the
empirical distribution of these differences in synchronization, measured in milliseconds, for the
203 points of coincidence in a performance of our system on Debussy’s Reverie. While our system
makes an occasional error greater than 100 milliseconds, the figure shows that such errors are
uncommon.

Needless to say, no amount of discussion can answer the most important question: “How
does it sound?” We rehearsed the Bach Sinfonia with the program for what amounts to about
15 complete renditions. A performance based on these rehearsals can be heard from the web
page: http://fafner.math.umass.edu/music_plus_one/expert.htm The interested reader is encouraged
to listen to this and other examples of our work in this area, including the Debussy example,
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Figure 6: A histogram of the error, in milliseconds, between the times of solo notes and accompaniment
notes that occur at identical score positions. Negative values indicate the accompaniment is early;
positive values indicate the accompaniment is late.
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referenced on the web page.
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