
Orchestra in a Box: A System for Real-Time Musical Accompaniment

Christopher Raphael
�

Department of Mathematics and Statistics,
University of Massachusetts at Amherst,

Amherst, MA 01003-4515,
raphael@math.umass.edu

Abstract

We describe a computer system that plays a respon-
sive and sensitive accompaniment to a live musi-
cian in a piece of non-improvised music. The sys-
tem of composed of three components “Listen,”
“Anticipate” and “Synthesize.” Listen analyzes
the soloist’s acoustic signal and estimates note on-
set times using a hidden Markov model. Synthe-
size plays a prerecorded audio file back at vari-
able rate using a phase vocoder. Anticipate cre-
ates a Bayesian network that mediates between Lis-
ten and Synthesize. The system has a learning
phase, analogous to a series of rehearsals, in which
model parameters for the network are estimated
from training data. In performance, the system syn-
thesizes the musical score, the training data, and the
on-line analysis of the soloist’s acoustic signal us-
ing a principled decision-making engine, based on
the Bayesian network. A live demonstration will be
given using the aria Mi Chiamano Mimi from Puc-
cini’s opera La Bohème.

1 Introduction
Musical accompaniment systems seek to emulate the task that
a human musical accompanist performs: supplying a missing
musical part, generated in real time, in response to the sound
input from a live musician. As with the human musician, the
accompaniment system should be flexible, responsive, able
to learn from examples, and bring a sense of musicality to the
task.

Most, if not all, efforts in this area create the audio ac-
companiment through a sparse sequence of “commands” that
control a computer sound synthesis engine or dedicated au-
dio hardware [Dannenberg, 1984], [R. Dannenberg, 1988],
[B. Vercoe, 1985], [B. Baird, 1993]. For instance MIDI (mu-
sical instrument digital interface), the most common control
protocol, generally describes each note in terms of a start
time, an end time, and a “velocity.” Some instruments, such
as plucked string instruments, the piano, and other percus-
sion instruments can be reasonably reproduced through such�

This work supported by NSF grants IIS-998789 and IIS-
0113496.

cartoon-like performance descriptions. Most instruments,
however, continually vary several attributes during the evo-
lution of each note or phrase, thus their MIDI counterparts
sound reductive and unconvincing.

We describe here a new direction in our work on musical
accompaniment systems: we synthesize audio output by play-
ing back an audio recording at variable rate. In doing so, the
system captures a much broader range of tone color and inter-
pretive nuance while posing a significantly more demanding
computational challenge.

Our system is composed of three components we call
“Listen,” “Anticipate,” and “Synthesize.” Listen tracks the
soloist’s progress through the musical score by analyzing the
soloist’s digitized acoustic signal. Essentially, Listen pro-
vides a running commentary on this signal, identifying times
at which solo note onsets occurs, and delivering these times
with variable latency. The combination of accuracy, com-
putational efficiency, and automatic trainability provided by
the hidden Markov model (HMM) framework makes HMMs
well-suited to the demands of Listen. A more detailed de-
scription of the HMM approach to this problem is given in
[Raphael, 1999].

The actual audio synthesis is accomplished by our Syn-
thesize module through the classic phase vocoding tech-
nique. Essentially, the phase vocoder is an algorithm en-
abling variable-rate playing of an audio file without introduc-
ing pitch distortions. The Synthesize module is driven by a
sequence of local synchronization goals which guide the syn-
thesis like a trail of bread crumbs.

The sequence of local goals is the product of the Anticipate
module which mediates between Listen and Synthesize. The
heart of Anticipate is a Bayesian network consisting of hun-
dreds of Gaussian random variables including both observ-
able quantities, such as note onset times, and unobservable
quantities, such as local tempo. The network can be trained
during a rehearsal phase to model both the soloist’s and ac-
companist’s interpretations of a specific piece of music. This
model then constitutes the backbone of a principled real-time
decision-making engine used in live performance for schedul-
ing musical events. A more detailed treatment of various
approaches to this problem is given in [Raphael, 2001] and
[Raphael, 2002].

attack sust sustsust

restrest

1 q

p

q
q

p p

pc

p(1-c) p(1-c)

pc

q q. . .

. . .

n states

Figure 1: A Markov model for a note allowing an optional
silence at the end.

2 Listen
To follow a soloist, one must first hear the soloist; “Listen” is
the component of our system that accomplishes this task.

We begin by dividing our acoustic signal into a collection
of “snapshots” or “frames.” In our current system the acous-
tic signal is sampled at 8 KHz with a frame size of 256 sam-
ples leading to about 31 frames per second. In analyzing the
acoustic signal, we seek to label each data frame with an ap-
propriate score position. We begin by describing the label
process.

The “score” containing both solo and accompaniment parts
is known to us. Using this information, for each note in
the solo part we build a small Markov model with states as-
sociated with various portions of the note such as “attack”
and “sustain” as in Fig. 1. We use various graph topologies
for different kinds of notes, such as short notes, long notes,
rests, trills, and rearticulations. However, all of our models
have tunable parameters that control the length distribution
(in frames) of the note. Fig. 1 shows a model for a note that
is followed by an optional silence, as would be encountered
if the note is played staccato or if the player takes a breath or
makes an expressive pause. The self-loops in the graph allow
us to model of a variety of note length distributions using a
small collection of states. For instance, one can show that,
for the model of Fig. 1, the number of frames following that
attack state has a Negative Binomial distribution,

�������
	���
,

where
�

and
�

are as described in the figure. We create a
model for each solo note in the score, such as the one of
Fig. 1, and chain them together in left-to-right fashion to pro-
duce the hidden label, or state, process for our HMM. We
write ��� 	 ��� 	������ for the state process where ��� is the state
visited in the � th frame. � � 	 � � 	������ is a Markov chain.

The state process, ��� 	 ��� 	������ , is, of course, not observ-
able. Rather, we observe the acoustic frame data. For each
frame, ����� 	���	������ , we compute a feature vector describing
the local content of the acoustic signal in that frame, � � . Most
of the components of the vectors !�"�$# are measurements de-
rived from the finite Fourier transform of the frame data, use-
ful for distinguishing various pitch hypotheses. Other compo-
nents measure signal power, useful for distinguishing rests;
and local activity, useful for identifying rearticulations and
attacks. As is consistent with the HMM model, we assume
that the conditional distribution of each � � , given all other
variables in our model, depends only on �%� .

One of the many virtues of the HMM approach is that the
class conditional distributions,

�&��')(*� �,+ � � � � '"(� � � *�

can be learned in an unsupervised manner through the Baum-
Welch, or Forward-Backward, algorithm. This allows our
system to adapt automatically to changes in solo instrument,
microphone placement, room acoustics, ambient noise, and
choice of the accompaniment instrument. In addition, this
automatic trainability has proven indispensable to the pro-
cess of feature selection. A pair of simplifying assumptions
make the learning process feasible. First, states are “tied”
so that

�-��')(*.
depends only on several attributes of the state*

such as the associated pitch and “flavor” of state, (attack,
rearticulation, sustain, etc.). Second, the feature vector is
divided into several groups of features,

' � ��' � 	�������	/'101 ,
assumed to be conditionally independent, given the state:�&�2')(*. �43 0576 � �&��' 5 (*� .

As important as the automatic trainability is the estima-
tion accuracy that our HMM approach yields. Musical sig-
nals are often ambiguous locally in time but become easier to
parse with the benefit of longer term hindsight. The HMM
approach handles this local ambiguity naturally through its
probabilistic formulation, as follows. While we are waiting
to detect the 8 th solo note, we collect data (increment �) un-
til + � � �:9<;>=�?A@7=CB �(� � � ' � 	�������	 � � � ' � ED<F
for some threshold

F
, where ;>=�?A@7= B is the first state of the8 th solo note model, (e.g. the “attack” state of Fig. 1). If this

condition first occurs at frame �HG then we estimate the onset
time of the 8 th solo note by

note BI� ?A@CJEKL?AM�!N"��O + � �P�Q� start B (�"�R� ' � 	������S	 ��� O � ' � O
This latter computation is accomplished with the Forward-
Backward algorithm. In this way we delay the detection of
the note onset until we are reasonably sure that it is, in fact,
past, greatly reducing the number of misfirings of Listen.

Finally, the HMM approach brings fast computation to our
application. Dynamic programming algorithms provide the
computational efficiency necessary to perform the calcula-
tions we have outlined at a rate consistent with the real-time
demands of our application.

3 Synthesize
The Synthesize module takes as input both an audio recording
of the accompaniment as well as an “index” into the recording
consisting of times at which the various accompaniment notes
are played. The index is calculated through an offline vari-
ant of Listen applied to the accompaniment audio data. The
polyphonic and multitimbral nature of the audio data make
for a difficult estimation problem. To ensure that our index
is accurate we hand-corrected the results after the fact in the
experiments we will present.

The role of Synthesize is to play this recording back at
variable rate (and without pitch change) so that the accom-
paniment follows the soloist. The variable playback rate is
accomplished using a phase vocoder [Flanagan and Golden,
1966], [Dolson, 1986]. This technique begins by dividing the
signal into a sequence of overlapping windows indexed by �
and computing the short time Fourier transform, T � , for each
window. Both the magnitude,

(T � (, and the phase difference

between consecutive windows, U � � ?A@CJ � T � WV ?A@CJ � T �!X)�
— both functions of frequency — are saved. The

�
th frame

of output is constructed using an accumulated phase functionY�Z
. We initialize

YH[
arbitrarily and compute the

�
th output

frame by choosing a window, � �2�\ and computing the in-
verse Fourier transform of the complex function with

(T �!] ZA^ (
as magnitude and

Y.Z
as phase. The accumulated phase is then

incremented by
Y.ZA_ �`� Y�Zba U �!] ZA^ . The phase vocoder en-

sures that the phase changes in a smooth manner from frame
to frame.

As an example, the audio data could be played at double the
rate by letting � �2� a � �4� ���\ a �dcfe for

� �g� 	C��	������ wheree
is the fraction of a window that does not overlap with its

successor. We refer to this rate of progress, 2 in this example,
as the “play rate.” Many improvements of this basic technique
are possible which might lead to more realistic audio output.

In our application the play rate varies with time and must
be chosen so that the solo and accompaniment synchronize
while maintaining a reasonably smooth playback of the audio
data. Subsequent sections focus on creating a sequence of
short term “goals” for Synthesize — times at which the next
unplayed accompaniment note should sound. When a new
goal is set, Synthesize calculates the play rate necessary to
achieve the goal and follows the new play rate until the play
rate is reset.

In our experiments we used an output sampling rate of 48
KHz with a frame size of 4096 samples and an overlap rate
of
e �h� cji . Output frames are smoothed using an “overlap-

add” technique.

4 Anticipate
A musical accompaniment requires the synthesis of a number
of different knowledge sources. From a modeling perspec-
tive, the fundamental challenge of musical accompaniment is
to express these disparate knowledge sources in terms of a
common denominator. We describe here the three knowledge
sources we use.

We work with non-improvisatory music so naturally the
musical score, which gives the pitches and relative durations
of the various notes, as well as points of synchronization
between the soloist and accompaniment, must figure promi-
nently in our model. The score should not be viewed as a rigid
grid prescribing the precise times at which musical events will
occur; rather, the score gives the basic elastic material which
will be stretched in various ways to produce the actual perfor-
mance. The score simply does not address most interpretive
aspects of performance.

Since our accompanist must follow the soloist, the output
of the Listen component, which identifies note boundaries in
the solo part, constitutes our second knowledge source. Given
the variable latency in the communication of detections from
Listen, we feel that any successful accompaniment system
cannot synchronize in a purely responsive manner. Rather it
must be able to predict the future using the past and base its
synchronization on these predictions, as human musicians do.

While the same player’s performance of a particular piece
will vary from rendition to rendition, many aspects of mu-
sical interpretation are clearly established with only a few

examples. These examples constitute the third knowledge
source for our system. The solo data, (solo note onset times
estimated from past rehearsals), are used primarily to teach
the system how to predict the future evolution of the solo
part. The accompaniment data, (the accompaniment onset
times estimated from the accompaniment recording), are used
to bias the system toward the interpretation exhibited in the
recording as well as toward a uniform play rate.

We have developed a probabilistic model, a Bayesian net-
work, that represents all of these knowledge sources through
a jointly Gaussian distribution containing thousands of ran-
dom variables. The observable variables in this model are
the estimated soloist note onset times produced by Listen and
the onset observable times for the accompaniment notes. Be-
tween these two layers of observable variables lies a layer of
hidden variables that describe unobservable quantities such
as local tempo, change in tempo, and rhythmic stress.

4.1 A Model for Rhythmic Interpretation
We begin by describing a model for the sequence of note on-
set times generated by a monophonic (single voice) musical
instrument playing a known piece of music. For each of the
notes, indexed by

� �hk 	������S	7� , we define a random vector
representing the time, l Z , (in seconds) at which the note be-
gins, and the local “tempo,” m Z , (in secs. per measure) for the
note. We model this sequence of random vectors through a
random difference equation:n l Zf_ �m ZA_ �po � n �rq Zk � o n l Zm Z o a n,s Zt Z o (1)� �uk 	������S	C�vV � , where q Z is the musical length of the

�)w2x
note, in measures, and the � s Z 	 t Z >y # and

� l [m [zy are mutu-
ally independent Gaussian random vectors. For instance, for
a half note in 4/4 time q Z �{� cA� , whereas a half note in 3/4
time would have q Z � �|c~} .

The distributions of the t Z # will tend concentrate around
0 expressing the notion that tempo changes are gradual. The
means and variances of the t Z # show where the soloist is
speeding-up (negative mean), slowing-down (positive mean),
and tell us if these tempo changes are nearly deterministic
(low variance), or quite variable (high variance). The s Z #
variables also concentrate around 0 and describe stretches
(positive mean) or compressions (negative mean) in the mu-
sic that occur without any actual change in tempo, as in a
tenuto or agogic accent. The addition of the s Z # variables
leads to a more musically plausible model, since not all varia-
tion in note lengths can be explained through tempo variation.
Equally important, however, the s Z # variables stabilize the
model by not forcing the model to explain, and hence respond
to, all note length variation as tempo variation.

Collectively, the distributions of the
� s Z 	 t Z zy vectors char-

acterize the solo player’s rhythmic interpretation. Both over-
all tendencies (means) and the repeatability of these tenden-
cies (covariances) are captured by these distributions.

Joint Model of Solo and Accompaniment
In modeling the situation of musical accompaniment we be-
gin with our basic rhythm model of Eqn. 1, now applied to
the composite rhythm. More precisely, let 8��[������S	 8����� and

Figure 2: A graphical description of the dependency struc-
ture of our model. The top layer of the graph corresponds to
the solo note onset times detected by Listen. The 2nd layer
of the graph describes the

� s Z 	 t Z variables that character-
ize the rhythmic interpretation. The 3rd layer of the graph is
the time-tempo process � m Z 	 l Z # . The bottom layer is the
observed accompaniment event times.

8��[�������	 8����� denote the positions, in measures, of the var-
ious solo note onsets and accompaniment events, where by
the latter we mean an onset or termination of any accompa-
niment note. We then let 8 [������S	 8 � be the sorted union
of these two sets of positions with duplicate times removed;
thus 8 [�� 8 � � ����� � 8 � . We then use the model of
Eqn. 1 with q Z �,8 ZA_ � V 8 Z ,

� �,k 	�������	C�{V � . A graphi-
cal description of this model is given in the middle two layers
of Figure 2. In this figure, the 3rd layer from the top corre-
sponds to the time-tempo variables,

� l Z 	 m Z zy , for the com-
posite rhythm, while the 2nd layer from the top corresponds
to the interpretation variables

� s Z 	 t Z zy . The directed arrows
of this graph indicate the conditional dependency structure of
our model. Thus, given all variables “upstream” of a vari-
able in the graph, the conditional distribution of that variable
depends only on its parent variables.

Recall that the Listen component estimates the times at
which solo notes begin. How do these estimates figure into
our model? We model the note onset times estimated by Lis-
ten as noisy observations of the true positions !l Z # . Thus, if8 Z is a measure position at which a solo note occurs, then
the corresponding estimate from Listen is modeled as� Z �,l Z a F Z
where

F Z�� ��� k 	�� � . Similarly, if 8 Z is the measure posi-
tion of an accompaniment event, then we model the observed
time at which the event occurs as�SZ �,l Z�a���Z
where

��Z � ��� k 	/� � . The note onsets estimated by Listen
constitute the top layer of our figure while the accompani-
ment event times constitute the bottom layer. There are, of
course, measure positions at which both solo and accompani-
ment events should occur. If

�
indexes such a time then � Z

and
��Z

will both be noisy observations of the true time l Z . The
vectors/variables

� l [m [zy and � s Z 	 t Z zy�	7F Z 	 � Z # �Z 6 � are as-
sumed to be mutually independent.

4.2 The Rehearsal Phase
Our system learns its rhythmic interpretation by estimating
the parameters of the trainable (

� l [m [>y and � s Z 	 t Z zy # �Z 6 �)
variables through a procedure analogous to a series of re-
hearsals. We initialize the model parameters — the means

Figure 3: Conditioning on the observed accompaniment per-
formance (darkened circles), we use the message passing al-
gorithm to compute the conditional distributions on the unob-
servable s Z 	 t Z # variables.

and covariances of the trainable variables — and perform
with our system as described in Section 4.3. Each such re-
hearsal results in an audio file which we parse in an off-line
fashion to produce a sequence of times at which solo note on-
sets occurred. These sequences of observed times, along with
the sequence of accompaniment event times estimated from
the original audio recording, serve as our training data.

We treat each sequence of times as a collection of observed
variables in our belief network. For instance, the accompa-
niment times are shown with darkened circles in Figure 3.
Given an initial assignment of means and covariances to the
trainable variables, we use the “message passing” algorithm
of Bayesian networks [Spiegelhalter et al., 1993], [Cowell et
al., 1999], to compute the conditional distributions (given the
observed performance) of the trainable variables.

We then perform analogous computations with the solo
performances leading to several sets of conditional distribu-
tions for the trainable variables. These are used to reestimate
the parameters of the trainable distributions using the EM al-
gorithm.

More specifically, we estimate the trainable parameters as
follows, and as in [Lauritzen, 1995]. We let � [Z 	�� [Z be our
initial mean and covariance matrix for the vector

� s Z 	 t Z .
We assume we have � sequences of observed variables, one
corresponding to the accompaniment performance and the
remaining ones taken from solo performances. During the�
th iteration of the algorithm, the conditional distribution of� s Z 	 t Z given the � th sequence, and using ���Z 	 � �Z # , has a��� 8 �5C� Z 	C�
�Z distribution where the 8 �5C� Z and

���Z
parameters

are computed using the message passing algorithm. We then
update our parameter estimates by

� � _ �Z � �� 0�576 � 8 �57� Z� � _ �Z � � �Z a �� 0�576 � � 8 �57� Z V � � _ �Z S� 8 �5C� Z V � � _ �Z y
An identical computation is performed to estimate the mean
and covariance of

� m [l [.
4.3 Real Time Accompaniment
The methodological key to our real-time accompaniment al-
gorithm is the computation of (conditional) marginal dis-
tributions facilitated by the message-passing machinery of

Figure 4: At any given point in the performance we will have
observed a collection of solo note times estimated estimated
by Listen, and the accompaniment event times (the darkened
circles). We compute the conditional distribution on the next
unplayed accompaniment event, given these observations.

Bayesian networks. At any point during the performance
some collection of solo notes and accompaniment events will
have been observed, as in Fig. 4. Conditioned on this infor-
mation we can compute the distribution on the next unplayed
accompaniment event. The real-time computational require-
ment is limited by passing only the messages necessary to
compute the marginal distribution on the pending accompa-
niment event.

Once the conditional marginal distribution of the pending
accompaniment event is calculated, we schedule the event ac-
cordingly (reset the play rate). Currently we schedule the
event to be played at the conditional mean time, given all
observed information. Note that this conditional distribution
depends on all of the sources of information included in our
model: The score information, all currently observed solo and
accompaniment event times, and the rhythmic interpretations
demonstrated by both the soloist and accompanist, learned
during the training phase.

A rather interesting case can be made for scheduling notes
slightly later than the conditional mean. If an accompani-
ment event corresponding to a point of synchronicity with the
soloist is scheduled late, then when the solo note is detected
the accompaniment event will be rescheduled (and played im-
mediately). On the other hand, an accompaniment event that
is scheduled early is simply played early. Thus, the conse-
quences of scheduling an accompaniment event at a particular
time are not symmetric around the actual solo note time.

The initial scheduling of each accompaniment event takes
place immediately after the previous accompaniment event is
played. It is possible that a solo note will be detected be-
fore the pending accompaniment event is played; in this case,
the pending accompaniment event is rescheduled by recom-
puting its conditional distribution using the newly available
information. The pending accompaniment event is resched-
uled each time an additional solo note is detected, until its
currently scheduled time arrives, at which time it is finally
played. In this way, every time an accompaniment note is
played, it’s time depends on all currently available informa-
tion.

In principle, each desired marginal distribution could be
computed by performing “Collect Evidence” with the clique
containing the desired variable as root. That is, passing mes-
sages inward toward the root, while observing the constraint
that each clique sends a message only after it has received
all incoming messages. Given the rather unusual situation

0

1

1

1

1

1

1

0

0

0

0

0

1 0

0

0

0

1

00

0

0

0

0

1

1

0

0

Figure 5: Abbreviated version of “Collect Evidence”

we face, in which our algorithm both observes variables and
computes marginals at interspersed, and a priori unknown,
times, a full computation of “Collect Evidence” is needlessly
wasteful. Instead we have implemented the following ap-
proach.

Off-line we perform a complete round of the message pass-
ing algorithm, thereby leaving our junction tree in equilib-
rium. Thus, each clique contains the marginal distribution
for the associated collection of variables. Each pair of neigh-
boring cliques in the junction tree are connected by two di-
rected edges, and we initially mark each of these edges as
“0,” meaning that no change in the probability representation
will result of a message is passed along the edge. This is, of
course, true since the junction tree is in equilibrium. Each
time a variable is observed, we first identify a clique con-
taining that variable. Then every directed edge moving away
from that clique in the junction tree is marked as “1,” as in
the left panel of Fig. 5. There are pending messages that wait
to be passed along these edges. When we wish to compute
a marginal distribution, we identify a clique containing the
variable of interest — the darkened square in the right panel
of Figure 5. We then perform an abbreviated version of “Col-
lect Evidence” using that clique as root. However, in passing
messages toward the root, we only pass those marked as “1,”
since the other messages will not affect our probability repre-
sentation. After each message is passed over a directed edge
marked “1,” that edge is then reset to “0,” as in the right panel
of Fig. 5. We are justified in marking these recently traversed
edges as “0” since any other message sent along such an edge
will not affect the probability representation. This reduces the
necessary computation considerably.

5 Computation
Our program must manage three types of computations and
these are organized through two separate asynchronous call-
back “loops,” as depicted in Figure 6. First, the Listen module
analyzes our acoustic input at a rate of about 31 frames per
second. Thus the basic iteration of Listen processes an input
frame and sets a signal instructing the Listen module to “wake
up” when the next input frame is ready. The Synthesize mod-
ule works analogously processing output frames at a rate of

play rate

(1 iter of phase vocode algorithm)
Process output frame

Schedule next output frame
(1 iter of forward algorithm)

Process input frame

Schedule next input frame

If solo note detected
reschedule next accomp note

(Anticipate algorithm)

If accomp note played
schedule next accomp note

(Anticipate algorithm)

Signal handler

Figure 6: Signals are delivered to the signal handler — the
top box in the figure. This will cause either an input frame
to be processed (the left branch), or an output frame to be
processed and played (right branch). Either case will result in
the scheduling of a new signal.

about 47 frames per second, also driven by signal callback.
When an input frame is processed, we read the next frame

of sound data and perform one iteration of the HMM analysis
engine. If this iteration results in the detection of a solo note,
we fix the appropriate variable of our belief network to the
estimated solo note onset time and recompute the time of the
pending accompaniment event through “Collect Evidence.”
This results in a new target time for the pending accompani-
ment note thus changing the play rate. for subsequent itera-
tions of Synthesize.

Each iteration of Synthesize computes and plays a new
frame of output data using our phase vocoder with the current
play rate. When the Synthesize module plays a frame cross-
ing an accompaniment note boundary, we consider that an
accompaniment note has been played. We then fix the corre-
sponding variable of our belief network and perform our ini-
tial scheduling of the next accompaniment note using “Col-
lect Evidence.” We choose the new play rate so that the next
accompaniment note will be played at the time recommended
by this computation.

Our program is written in c and runs on a 1.6 GHz Pentium
4 Linux notebook.

6 Live Demonstration
Our conference presentation will feature a live demonstra-
tion of the system on the aria “Mi Chiamano Mimi” from
Puccini’s opera La Bohème performed by the author. The
accompaniment audio file for this aria was taken from a��� ;7 ¢¡ � ¤£ � ;�¥`£§¦�¨H© recording. An example of our cur-
rent state of the art with this project can be heard at
http://fafner.math.umass.edu/ijcai03 along with a number
of other audio examples of related accompaniment efforts.

References
[B. Baird, 1993] N. Zahler B. Baird, D. Blevins. Artificial

intelligence and music: Implementing an interactive com-
puter performer. Computer Music Journal, 17(2):73–79,
1993.

[B. Vercoe, 1985] M. Puckette B. Vercoe. Synthetic re-
hearsal: Training the synthetic performer. In Proceedings
of the International Computer Music Conference, 1985,
pages 275–278. Int. Computer Music Assoc., 1985.

[Cowell et al., 1999] R. Cowell, A. P. Dawid, S. Lauritzen,
and D. Spiegelhalter. Probabilistic Networks and Expert
Systems. Springer, New York, New York, 1999.

[Dannenberg, 1984] R. Dannenberg. An on-line algorithm
for real-time accompaniment. In Proceedings of the Inter-
national Computer Music Conference, 1984, pages 193–
198. Int. Computer Music Assoc., 1984.

[Dolson, 1986] M. Dolson. The phase vocoder: A tutorial.
Computer Music Journal, 10(4):14–27, 1986.

[Flanagan and Golden, 1966] J. L. Flanagan and R. M.
Golden. Phase vocoder. Bell System Technical Journal,
pages 1493–1509, Nov. 1966.

[Lauritzen, 1995] S. L. Lauritzen. The em algorithm for
graphical association models with missing data. Compu-
tational Statistics and Data Analysis, 19:191–201, 1995.

[R. Dannenberg, 1988] H. Mukaino R. Dannenberg. New
techniques for enhanced quality of computer accompani-
ment. In Proceedings of the International Computer Music
Conference, 1988, pages 243–249. Int. Computer Music
Assoc., 1988.

[Raphael, 1999] C. Raphael. Automatic segmentation of
acoustic musical signals using hidden markov models.
IEEE Trans. on PAMI, 21(4):360–370, 1999.

[Raphael, 2001] C. Raphael. A probabilistic expert system
for automatic musical accompaniment. Jour. of Comp. and
Graph. Stats., 10(3):487–512, 2001.

[Raphael, 2002] C. Raphael. A bayesian network for
real-time musical accompaniment. In T.G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neu-
ral Information Processing Systems, NIPS 14. MIT Press,
2002.

[Spiegelhalter et al., 1993] D. Spiegelhalter, A. P. Dawid,
S. Lauritzen, and R. Cowell. Bayesian analysis in expert
systems. Statistical Science, 8(3):219–283, 1993.

