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Abstract

We present an approach to the “desoloing” problem in which we seek to separate a soloist from the
accompanying instruments using monaural audio. Our approach uses a time-aligned symbolic musical
score; thus the musical pitches we wish to eliminate, as well as their time localizations are known.
Separation is achieved by masking the short time Fourier transform (STFT). Thus the problem is
simplified to classifying each STFT point as belonging to solo or accompaniment. Our experiments
concern the problem of separating a violin soloist from a full orchestra. We first treat the problem
with real audio data in which the contributions from soloist and orchestra are known. In this case we
label time-frequency points using a classifier, learned from labeled training data, whose accuracy can be
measured. We then extend these results to incorporate realistic constraints on the labeling. This latter
method is tested on data from a commercial compact disc.

1 Introduction

Audio source separation seeks to decompose an audio recording into several different layers corresponding

to independent sources, such as different speakers, or, in our case, musical parts. Source separation is a

formidable task; while the problem has received considerable attention in recent years, it is safe to say that

it remains open.

Many approaches this audio decomposition problem are deemed blind source separation, meaning that

the audio is decomposed without explicit knowledge of its contents [1] [2], [3]. In particular, much recent

work has focused on Independent Component Analysis (ICA) [4] [5], as the methodological backbone of

various approaches. Work on blind separation also contains work specifically devoted to music audio,

such as [6] and [7]. While blind separation is, no doubt, broadly useful and deeply interesting, many of
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the techniques rely on restrictive assumptions about the recording process or audio, often not satisfied

in practice. Moreover, blind approaches seem simply wrong-headed for our purposes, since they fail to

capitalize on our explicit and detailed knowledge of the audio. The focus of our effort here is in fully

incorporating this knowledge in a principled approach to musical source separation.

Our motivation stems from our ongoing work in musical accompaniment systems, in which a computer

program generates a flexible and responsive accompaniment to a live soloist in a non-improvisatory piece

of music. Our favorite musical domain is the concerto, or other work involving an entire orchestra for the

accompaniment. Since our preferred approach resynthesizes a preexisting audio recording to synchronize

with the live player [8], we rely on orchestra-only recordings. Some orchestral accompaniments can be

purchased from commercial sources, however, the small collection of available accompaniments tend to be

poorly recorded with variable playing. The ability to desolo a complete recording would open up a vast

library of beautifully played and expertly recorded accompaniments for our system. Thus, our particular

vantage point produces an asymmetrical view of the source separation problem, in which we seek to separate

a single instrument from a large ensemble. This has important implications for the types of models and

algorithms that we employ.

The unusual aspect of our problem statement is that we assume detailed knowledge of the audio

content of our recordings: we begin with symbolic musical score, giving the complete collection of pitches

and rhythms in the solo and all accompanying parts. Our long-standing interest in score alignment has led

to algorithms that automatically create a correspondence between the audio recordings and the symbolic

scores [9], [10]. Thus, at any moment in the audio we know what notes are sounding and which parts they

belong to. A partial depiction of our score knowledge is given in Figure 1 in which vertical lines mark the

onsets of each solo note. Score knowledge for musical source separation has also been used in [11] and [12].

Both of these efforts apply a time-varying filter to distinguish the desired audio from its complement. In
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Figure 1: Spectrogram of opening of Samuel Barber Violin Concerto with note onsets for the solo violin
marked with vertical lines. A high-resolution version of this same image with the solo part highlighted in
blue can be seen at http://xavier.informatics.indiana.edu/˜craphael/cmj07.

these efforts, as in ours, the difficulty of identifying the precise time-frequency components one wishes to

isolate is the “Achilles’ heel” one must inevitably address. Our approach differs from these cited by casting

this isolation problem as a one of classification and employing appropriate methodology.

While our interest is motivated by a particular application, this work potentially has broader impact.

The most obvious application is karaoke, which also requires an accompaniment-only recording. Desoloing

a recording is easy when the solo part is recorded separately and asymmetrically mixed into stereo channels,

as is often the case in popular music: one need only estimate the mixing weights for each channel and then

invert mixing operation. This popular technique, formalized by ICA, forms the basis of several commercial

desoloing software products. When the recording and mixing techniques do not support this “trick,” then

methods such as our current proposal constitute a viable alternative. Other applications of the general

problem of musical source separation include remixing existing recordings, incorporating existing musical

material into new compositions, construction of audio databases, audio editing, and, no doubt, many ideas

not yet conceived.
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Our essential approach examines a small, yet reasonable, subset of possible decompositions of the audio:

using our road map, we attribute each short-time Fourier transform (STFT) time-frequency point to either

the soloist or to the accompaniment. Then, we invert our STFT using the appropriate subset of points

to produce either the desoloed audio, or the soloist alone. This is the well-known idea of masking [13],

[14]. Using easy-to-create training data synthesized from separate solo and orchestra files, we provide

subjective justification for our restricted problem statement. This training data then leads to a principled

machine-learning formulation of the problem whose performance we evaluate objectively. We conclude with

experiments on data taken from a commercial compact disc in an especially difficult domain — separating

the soloist from the orchestra in a concerto setting.

2 STFT Representation

Our approach is based on the short time Fourier transform (STFT) representation of our audio signal. The

advantages of this representation are rather obvious for musical signals — much music is composed of notes

which are, almost by definition, of limited extent in both time and frequency. Thus, most pairs of notes

are supported by entirely disjoint regions of time-frequency space. Even with the STFT, collisions will still

occur between harmonics of some notes. However, we believe that other possible signal representations,

such as wavelets, share this problem, while the STFT goes as far as any representation can in minimizing

the difficulty.

Suppose our audio signal is denoted by

x = . . . , x(−1), x(0), x(1), . . .

We write the short-time Fourier transform of x as X = X(t, k) where

X(t, k) =
∑

n

x(n)e−2πikn/Kw(tH − n) (1)
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where k = 0, . . . ,K − 1, t ∈ Z, H is our hop size, and w is the window function which is 0 outside the

range {−K/2 . . . ,K/2 − 1}. We assume K = HL so that L is the integral number of “hops” needed to

traverse the FFT length, K.

Perfect recovery of x from X is exceedingly simple when

∑

t

w2(tH − n) = c (2)

for all n and some constant c (see [15] and the references therein for a more detailed discussion). In this

case

x(n) =
1

c

∑

t

x(n)w2(tH − n)

=
1

cK

∑

t

K−1
∑

k=0

X(t, k)e2πikn/Kw(tH − n) (3)

=
1

cK

∑

t

K/2
∑

k=0

a(t, k) cos(φ(t, k) + 2πkn/K)w(tH − n) (4)

where the amplitudes {a(t, k)} and phases {φ(t, k)} are taken from X(t, k).

There are several window functions other than the constant window that have the necessary property

of Eqn. 2. Among them are the Hanning or “raised cosine” window with L = K/H = 4 hops per FFT

length, which we use in our experiments.

Eqn. 4 is a rather intuitive description of the original signal as a sum of windowed and translated

cosines, whose frequencies are indexed by k and whose translations are indexed by t.

3 Approximate Source Separation

Ideally we wish to decompose our signal x into x = xs + xa where xs corresponds to the solo part and

xa corresponds to the accompaniment. Equivalently, we could seek a decomposition in STFT space:

X = Xs +Xa, where Xs and Xa are the STFTs of xs and xa, though this problem still involves the precise

estimation of phase and amplitude for each time-frequency bin of Xs and Xa, subject to the constraint.
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Instead we consider the approximations

Xs ≈ 1SX

Xa ≈ 1AX

where

S = {(t, k) : |Xs(t, k)| ≥ |Xa(t, k)|}

A = {(t, k) : |Xs(t, k)| < |Xa(t, k)|}

and

1C(t, k) =

{

1 if (t, k) ∈ C
0 otherwise

Clearly these approximations are much easier to estimate than the true Xs and Xa since we need only

estimate a boolean value for each STFT point, rather than a complex number.

One can appreciate the quality of this approximation by synthetically manufacturing X from known

Xs and Xa and listening to the resulting decomposition. To this end, we began with a performance, xs, of

a soloist playing an excerpt from a Mozart violin concerto. We then built the orchestra audio around this

performance by first matching both her performance and a prerecorded orchestra performance to a score.

We then warped the orchestra recording to synchronize with the solo part using phase-vocoding [16] , [17],

[18]. and adjusted the levels to achieve good balance to produce xa. There are certainly easier ways to

produce two synchronized parts, but we already had the machinery set up for the above procedure, and

wanted to approximate realistic conditions as well as possible. From the audio files, xs and xa, we produced

the composite STFT, X = Xs + Xa, as well as the two estimates of the separate solo and accompaniment
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parts, x̂a and x̂s, by

x̂a = STFT−11AX

x̂s = STFT−11SX

using Eqn. 3. The three files x = STFT−1X, x̂s, x̂a can be heard at

http://xavier.informatics.indiana.edu/˜craphael/cmj07.

The quality of x̂s and x̂a was rather surprising to us, sounding, for the most part, quite similar to the

original files. This suggests that the effect of our masking operations might not be as significant as one

might expect, as has been observed by others in the music processing domain [19].

It is, perhaps, worth noting that our masked versions 1SX and 1AX are not necessarily the STFTs of

any time signal. This is because the overlapping of windows produces linear constraints the STFT must

satisfy. We have no reason to suppose that our masked versions of X would satisfy these constraints.

However, the difference between 1SX and STFTx̂s, is exceedingly small, both in terms of measurable and

perceived distance, (similarly for 1AX and STFTx̂a).

Figure 2 shows the region S as white while the complementary region, A, is colored black. The accom-

panying web page shows the spectrogram with the two regions colored differently to clearly distinguish

them. Perhaps surprising is how much of the STFT is labeled as “solo,” including regions seemingly far

from any solo harmonics. Part of this chaotic nature of the mask is explained by the spectrogram image.

From this image it is clear that the class labels of many of the points are somewhat irrelevant, due to their

small contribution to the audio signal.

This experiment demonstrates that the perceptual accuracy of x̂a and x̂s, thus justifying the use of our

approximation. While certainly much easier than trying to estimate Xs and Xa from X, the estimation

of our ideal mask is still a difficult problem and will introduce further audio degradation. Thus, the audio
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Figure 2: The binary mask indicating, for each point, which part makes the greater contribution. The
solo violin is represented as white. See http://xavier.informatics.indiana.edu/˜craphael/cmj07 for the
spectrogram with color overlayed to express the binary mask.

results should be considered an upper bound on what our masking approach can achieve. The next section

develops an approach for estimating the ideal mask.

4 Estimating the Mask

4.1 Classification Trees

Constructing our composite data from unmixed solo and accompaniment parts, as above, leads to principled

methods for estimating the ideal mask, as follows. For each point in the composite STFT, X = Xs + Xa,

we know whether Xs or Xa made the bigger contribution. Thus our synthetic spectrum can be viewed

as training data for a classifier that attempts to label each point as belonging to S or A. Needless to

say, this approach produces voluminous quantities of training data — hundreds of thousands of correctly

labeled points for minute-long audio excerpts. With such a large and easily obtainable collection of ground

truth, it seems natural to train a classifier to label each STFT point. In addition to the fully automatic

construction of the classifier, such an approach allows one to numerically evaluate its success, rather than

making subjective judgments of audio quality.
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In building our classifier we depart slightly from that presented in the previous section. Many, perhaps

most, of the STFT points do not significantly affect our end result, due to their small magnitudes. When

building the classifier we eliminate points in {|X(t, f)| < T}, for some threshold T , since we don’t view

their labels as meaningful, thus distracting the classifier from its essential task.

With the remaining points we build a tree-structured classifier following the ideas of CART [20]. Our

features are derived both from our score match, as well as aspects of the STFT, and consisted of:

vertical dist to closest solo harmonic This feature computes the distance in frequency from the given

STFT point to the closest solo harmonic. The feature depends only on the score match. For each

STFT point we compute which solo note, if any, is coincident with point and how far the point is, in

frequency units from the closest solo harmonic. This feature, by itself, can be used to give somewhat

credible results.

vertical dist to closest orchestra harmonic This feature is perfectly analogous to the previous fea-

ture, except we consider distances to orchestra harmonics rather than solo harmonics.

distance to closest solo harmonic This feature is also purely a function of the score match. Conceptu-

ally we create a binary representation of the solo performance as an idealized spectrogram, containing

1’s only where solo harmonic occur. For each STFT point we compute the minimum Euclidean dis-

tance to a 1 point over all STFT points of “earlier” times. This feature is useful for detecting points

whose energy is mostly due to reverberation of a solo harmonic.

modulus |X(t, f)|. High energy points are more likely to be associated with the solo part. We also

computed average modulus over local neighborhoods.

rank The percentile ranking of the modulus over a neighborhood of STFT points. The STFT points
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associated with the solo tend to be larger in magnitude than their neighbors. This feature was

computed over 4x4, 3x3, and 2x2 neighborhoods.

phase coherence One expects that the STFT points composing a harmonic will tend to evolve in time

with similar phase advance. This is, in fact, the idea behind the “phase locking” improvements to the

phase vocoder [21]. We computed a measure of the degree to which this is true for an STFT point

as the empirical variance of the phase advances. We expect this feature will be small on a peak, and

especially true for the more closely-recorded solo instrument.

horizontal derivatives Horizontal differences of the STFT moduli were computed in hopes of detecting

higher activity for solo harmonics.

We experimented with several other features, but none of these achieved any measurable increase in

performance on a validation set.

The classifier is then built according to the usual CART prescription of recursive partitioning, choosing,

at each stage, the feature and split point the minimizes the average class label entropy of the two child

nodes. We built deep trees, using 680,000 correctly labeled STFT points, splitting tree nodes until a node

contains only solo or orchestra points, or until the node has less than 50 points, thus producing thousands

of branches. We then prune the tree using traditional CART techniques using an independent validation

set of approximately the same size as for training[20].

A portion of the classification results on a separate test set are presented in the accompanying web

page, again on the soloist’s entrance to the Mozart violin concerto, in which the mistakenly labeled points

are indicated with color. The falsely classified points accounted for .025 of the total collection of S and

.029 of the total collection of A, out of 680,000 test points. The associated audio reconstructions are not

without their merits, but suffer from the discontinuous nature of the purely local processing technique.
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4.2 Spatial-Constraint-Based Classification

The decisions of the learned classification tree are mostly based on the distances to solo and orchestral

harmonics, as well as local energy in the signal. Clearly these features do not contain enough information

to consistently distinguish between solo and orchestra — we doubt any local features can do this. Rather,

the separation must be made on less local properties of the signal, which is the approach we move toward

in the current section. To this end, we constrained our classifier to estimate masks having a connected

structure, typical of the masks we seek. This modification identifies two distinct kinds of events occurring

within the solo part: note harmonic events and transient events.

For each harmonic of each solo note we consider a rectangular box, B, of sufficient extent to contain the

energy generated by that note. The box must extend beyond the “right” edge of the note to include the

note’s reverberation, and account for our uncertainty in pitch as well. Let t0, te, t1 denote STFT time indices

giving the onset of the note, the onset of the next note, and the latest possible time the note might continue

to reverberate. Let the frequency extent be bounded by k0 and k1, so B = {t0, . . . , t1} × {k0, . . . , k1}.

We seek to label all of the points in B as s or a for solo or accompaniment, and write C(t, k) for the label

of point (t, k). In the previous section our tree-structured classifier was used to make binary decisions about

each point; however, note that our classifier can be used to estimate the probabilities of these assignments,

e.g. P (C(t, k) = s|X), as the proportion of training examples labeled as s at the terminal node encountered

by (t, k). In practice, we smooth these estimates. In this way we use the learned tree as the basis for our

data model.

If I ⊆ B is the collection of points labeled as solo, then, assuming independence, the joint labeling, CB ,

of all points in B, has probability

P (CB |X) =
∏

(t,k)∈I

P (C(t, k) = s|X)
∏

(t,k)∈Ic

P (C(t, k) = a|X) (5)
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where Ic is the complement if I in B.

To force connectedness of our labeling, we constrain the region I, as follows. For each t = t0, . . . , te, . . . , t1

we choose a single (possibly empty) interval, It ⊆ {k0, . . . , k1}, constrained by the requirements

It ∩ It+1 6= ∅ when It 6= ∅, It+1 6= ∅ (6)

It+1 ⊆ It when t ≥ te (7)

Thus, the sequence of intervals traces out a connected region, I = ∪t1
t=t0It, whose vertical extent is non-

increasing in the region attributed to reverberation. Subject to the constraints, we seek the set I that

maximizes Eqn. 5.

Such a region can easily be identified using dynamic programming. To this end we enumerate the

possible intervals, It, for each t ∈ {t0, . . . , t1}. For each interval It we define the data probability

Dt(It) =
∏

k∈It

P (C(t, k) = s|X)
∏

k∈Ic

t

P (C(t, k) = a|X)

and set Ht0(It0) = Dt0(It0). We then recursively compute the score, Ht(It) for t ∈ {t0 + 1, . . . , t1} by

Ht(It) = max
It−1

Ht−1(It−1)Dt(It)

where the maximum is over all intervals, It−1 that satisfy Eqns. 6,7. If I∗t1 is the maximizing interval for

Ht1 , then we can recursively construct the optimal sequence of intervals by

I∗t−1 = arg max
It−1

Ht−1(It−1)Dt(It)

thus producing our optimal sequence of intervals: I ∗

t0 . . . I∗t1 .

The second type of solo event we identify are transient events associated with note onsets. Many instru-

ments produce vertical lines in the spectrogram images at note onset positions, corresponding to widely

dispersed spectral energy, before the note settles into its steady-state behavior. While such events are most
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obvious in percussive and plucked string instruments, we have observed them in most of the instruments

we have studied. These transient events are typically contained within a “thin” and “tall” rectangle in

STFT space, {t0, . . . , t1}×{k0, . . . , k1}, centered in time around the note onset time. Specifically t0, . . . , t1

corresponds to around 100 ms. while k0, . . . , k1 contains the entire frequency range. We model the transient

region as a sequence of horizontal intervals Ik ⊆ {t0 . . . t1}, where k ∈ {k0 . . . k1}. The (possibly empty)

intervals are constrained by

Ik = Ik+1 when Ik 6= ∅, Ik+1 6= ∅

thus producing a sequence of rectangles separated by gaps to allow the “free passage” of orchestral har-

monics. We seek the collection of rectangles that maximizes

H =
k1
∑

k=k0

∑

t∈Ik

Fv(t, k) − Fh(t, k)

where Fv and Fh are two-dimensional filters designed to highlight vertical features (the solo transients)

and horizontal features (the orchestral harmonics). Again, this criterion is easily optimized using dynamic

programming.

Using an excerpt from a commercial compact disc of Samuel Barber’s Violin Concerto, the accompa-

nying web page shows the solo points identified by our spatial-constraint-based classifier colored in purple

while the remaining points are colored in blue. The accompanying web page also presents the solo and

orchestra audio achieved by inverting the STFT after using the estimated masks. While traces of the

unwanted part are occasionally present, we believe these results to be highly promising, especially when

considering the challenge of source separation in this orchestral context. It is, of course, not possible to

provide any quantitative evaluation of this experiment, since we are not given the “unmixed” solo and

orchestra channels.
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5 Discussion and Future Directions

Even with our precise score match, our desoloing process degrades the resulting audio. While we hope

to improve on our results, we expect this will always be true. In an unusual turn of events, however,

forces seem to conspire in our favor to ameliorate this situation in the context of our accompaniment

system. The damage done to the audio will be at the precise points in time-frequency space where the

live soloist will be playing, thus masking much of the harm done in removing the recorded soloist. The

accompanying web page shows an example of our accompaniment system using desoloed audio on the 2nd

movement of the Strauss Oboe Concerto with the author playing the oboe. The desoloing procedure was

more simple-minded than that presented here, but still produces acceptable results.

The most significant contribution of this work is the combination of machine learning techniques with

the road map provided by the score match, resulting in a principled way a addressing the desoloing problem.

Our technique is generally applicable, in the sense that it does not rely on unrealistic assumptions about the

recording process. Beyond that, we have demonstrated a method for training our separating mechanism

from real data, as well as numerically evaluating the quality of this separation. Finally, we have offered

credible audio results that show the promise score-guided musical source separation.

While we believe in posing the separation problem as one of estimating binary masks, there are many

other, perhaps better, ways this estimation might be accomplished. The matched score can serve as the

basis for estimating more detailed models of the signal, including the functions |Xs| and |Xa|, or even the

complete complex Xs and Xa. The first of these, however, is complicated by the fact that |Xs|+ |Xa| 6= |X|

as well as the difficulty imposed by the positivity restriction on our estimates, though this latter issue is an

active research area [22]. When dealing with the full complex STFTs we do have Xs +Xa = X, however, it

is unclear to us how to model the complex evolution of the signal. Both of these approaches are reasonable
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endeavors, even if the eventual goal is only the binary masks, since the extra nuisance parameters may

lead the more precise estimation of the masks. Members of the Bayesian Signal Analysis community, as

well as others, may recognize these as problems “right down their alley.” We welcome the contributions of

such areas and will endeavor to make score-matched audio data available to those who request it.
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