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ABSTRACT

A system that generates flexible orchestral accompaniment
of a computer-enabled piano is presented and demonstrated.
We introduce a probabilistic model for the piano data that
can be used for on-line and off-line estimation of the pi-
ano performance. The model is automatically trainable to
the specific performer and piece under consideration. The
on-line position estimates form the observable data for a
trainable prediction engine that anticipates the future evo-
lution of the performance. These ongoing predictions drive
a phase-vocoded audio performance of the orchestra. We
present results on a highly challenging gem from the Ro-
mantic piano concerto repertoire.

1. INTRODUCTION

Active research on Musical accompaniment systems contin-
ued for over two decades since the simultaneous premier of
the first two such systems at the ICMC in 1984 [2], [6], Such
systems seek to provide a flexible accompaniment to a live
soloist that follow expressive timing and other performance
nuances exhibited by the soloist. Our treatment of this prob-
lem is in a non-improvisatory concerto-like domain.

There are a variety of sensing mechanisms that an ac-
companiment system may use to understand the actions of
the live player. The most widely applicable of these is,
or course, audio since every musical instrument can pro-
duce audio. Schwarz [5] has a nice annotated bibliography
detailing the last couple decades’ work in this area. The
results cited within include some impressive successes for
wind, string and brass instruments in highly challenging do-
mains, though polyphonic solo instruments such as the pi-
ano, pose exceptionally difficult and largely unsolved ob-
stacles. Piano-specific issues making this scenario partic-
ularly hard include the complexity of the piano music and
the ambiguity in mapping the score into the audio model.
Some reasons for this ambiguity come from the score’s in-
ability to accurately represent offset times, due to pedaling
and the “multi-channel” nature of the piano; the potential
for some parts of the score to obscure other parts; and in-
creasing similarity of the various chord signatures as note
density increases.

The accompaniment problem is easier when symbolic
music data are used, such as the output of a MIDI keyboard
or wind controller. This domain has received some atten-
tion [1], as well as several commercial systems such as one
recently released by Yamaha as a companion to the newest
Disklavier. The disadvantage of symbolically-based score
followers for “classical” music is that most instruments gen-
erating symbolic data lack the rich and varied depth of their
acoustic counterparts.

There is, however, one significant exception to this gen-
eralization. Reproducing pianos, such as the Yamaha Dis-
klavier and the B̈osendorfer CEUS are rapidly gaining ac-
ceptance as research and performance tools. These instru-
ments arereal pianos with hammers, strings, etc., that are
alsocapable of generating real-time performance data. Such
instruments open the door to piano accompaniment systems
by circumventing the challenge of audio score following for
piano.

We address the problem of musical accompaniment for
piano in a traditional concerto-type domain. Our work dif-
fers from past work in this domain through the coherent
probabilistic model we present which canlearn from ex-
amples. Through this model we can prescribe reasonable a
decision process in the face of uncertainty. We model the
listening problem with a dynamic Bayesian network whose
observable variables are the timing and pitch information
produced by the piano. Our system is able to follow a live
player duringin vivoexperiments involving considerable ru-
bato and error on the part of the soloist. We generate the
real-time accompaniment for the pianist using a Kalman
filter-type model to predict future musical evolution, while
generating the audio accompaniment by phase-vocoding a
prerecorded orchestra. We present experiments on the 1st
movement of the Rachmaninov 2nd piano concerto using a
Bösendorfer reproducing piano.

2. THE MODEL

The data we model here are a subset of the MIDI output
from the reproducing piano. We denote these data asy =
(y1,y2, . . . ,yN) whereyn = (mn, tn) with mn andtn the midi
pitch and time in seconds of thenth onset played by the
piano.
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Figure 1. Top: A model showing possible transitions be-
tween the various notes of the musical score. Self-loops
correspond to inserted notes while arcs that skip states cor-
respond to deleted notes.Bot: A model showing how piano
chords are handled. Since the order of observed notes in a
chord is unknown, the model enumerates all possible order-
ings of the chord.

We seek a real-time correspondence betweeny and our
musical score. To this end we define a hidden processx =
x1, . . . ,xN so thatxn indexes the note corresponding toyn.

If a portion of our score is monophonic, we represent the
score as a sequence of states as in the top panel of Fig. 1, one
for each note. As indicated in this figure, we do not assume
that the player necessarily plays every note on the score, nor
do we assume that no accidental notes are added. Rather
we allow both “self-loops” and “skips” in the graph, cor-
responding to inserted and deleted notes. Thus, for exam-
ple, a path through this graph that begins by visiting states
1,3,3 and 4, corresponds to playing the 1st note, skipping the
2nd note, playing the 3rd note, adding an extraneous note
between the 3rd and 4th notes, and playing the 4th note.
Though we do not indicate this in the figure, we will allow
state transitions that skip several notes as well.

The top panel of Fig. 1 oversimplifies due to the poly-
phonic nature of piano music, in which we may have sev-
eral notes that begin at the same score time. If the player
attempts to play these notes simultaneously, the actual or-
der of onsets reported by the piano is essentially random.
Thus we allow for all possible orderings of these events and
model this as in the bottom panel of Fig. 1. For example,
if k notes are to sound simultaneously, we havek! possible
ordering of these notes, so we will, in principle, includek!
sequences ofk notes. Here, for the sake of clarity, we have
omitted the self-loops and skips in the figure, though they
are present in our actual model.

We model the transitions between the states probabilis-
tically. We create an initial state for the graph,ξ0, that pre-
cedes the first note(s) in our score and defineL(ξ0) = 0
whereL gives the “level” of the state. The level of every
other state is defined to be the number of transitions fromξ0

needed to reach the state. We model the hidden sequence,x,

as a Markov chain which begins in stateξ0 and has transition
probabilities

p(xn+1|xn) = q(L(xn+1)−L(xn))/B(xn+1) (1)

for n = 1, . . . ,N−1. Here∑K
k=0q(k) = 1 andB(xn+1) is the

number of simultaneous notes in the chord ofxn+1. Thus
q(0) is the probability of the pianist adding an extra note,
q(1) is the probability of moving to the next score note, and
q(k) for 1 < k≤ K is the probability of skippingk notes. If
we move across a chord boundary we must split the proba-
bility evenly between theB(xn+1) various states at the same
level, hence the divisor in Eqn. 1.
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Figure 2. The model shows the joint dependency structure
of the variables of our model. The top row is the sequence
of hidden score positions while the bottom row denotes the
(pitch,time) pairs that are observed from the piano.

We model the dependence of our observed piano data,y,
on the state sequence,x, as

p(y|x) = p(y1|x1)
N−1

∏
n=1

p(yn+1|xn,xn+1,yn)

The conditional dependence structure of this model is given
in Fig. 2. We further assume that

p(yn+1|xn,xn+1,yn) = p(tn+1,mn+1|xn,xn+1, tn,mn)
= p(tn+1|xn,xn+1, tn)p(mn+1|xn,xn+1)

The distributionp(mn+1|xn,xn+1) is modeled as

p(mn+1|xn,xn+1)=
{

qunif(mn+1) if xn = xn+1

qmid(mn+1−m(xn+1)) otherwise

wherem(xn) is the midi pitch associated with statexn and
qmid is a probability distribution centering most of its mass
around 0 and trailing away quickly as the argument increases
above or decreases below 0. This expresses the notion that
the player plays the correct note most of the time, and oth-
erwise usually plays a nearby key.qunif is a uniform distri-
bution over the possible pitches on the piano, expressing the
notion that if a note is inserted we really have no idea what
note it will be.

The distributionp(tn+1|xn,xn+1, tn) is modeled as

p(tn+1|xn,xn+1, tn) =
{

e(tn+1− tn;λ ) if xn = xn+1

g(tn+1; µ,σ2) otherwise

wheree(tn+1;λ ) is the Exponential density with parameter
λ and g(tn+1; µ,σ2) denotes the Gamma density parame-
terized with its mean,µ, and variance,σ2, rather than the



usual shape and scale parameters. We then compute the
mean and variance asµ(tn.xn,xn+1)= tn+A(xn,xn+1) where
A(xn,xn+1) is the expected time elapsed between thexn and
xn+1 andσ2 = σ2(tn.xn,xn+1) is a fixed increasing function
of µ(tn.xn,xn+1).

3. SCORE FOLLOWING

We accomplish score following by computing thefiltered
distribution on our score positionxn having observed the
first n piano events,p(xn|y1, . . . ,yn). This is easily computed
according to the recursion

p(xn+1 | y1, . . . ,yn+1)

=
∑xn p(xn|y1, . . . ,yn)p(xn+1|xn)p(yn+1|xn+1)

∑xn,x′n+1
p(xn|y1, . . . ,yn)p(x′n+1|xn)p(yn+1|x′n+1)

every time we observe a new piano eventyn+1 =(mn+1, tn+1).
The filtered distribution expresses everything known about

the current hidden state, so it seems reasonable to base any
accompaniment decisions on this distribution. Unlike with
score following of audio, we get observations at a non-uni-
form rate with our piano data. Thus, if the most recently
received piano corresponds to a score position with high
probability, we immediately conclude that the note has been
played and take appropriate action.

We implement this as follows. If, upon updating the fil-
tered distribution, we find that a single score positionx∗n+1
has

1. p(x∗n+1|y1, . . . ,yn+1) > τ for some thresholdτ

2. the notex∗n+1 has not yet been reported

3. if x∗n+1 is a member of a chord then no other chord
members have yet been reported

we determine that the notex∗n+1 has been played at the time
we receivedyn+1.

Once a piano note has been detected we change the play-
ing of the accompaniment to be consistent with the detected
note. The essential method we use is described compactly
in [4], so we will explain this method only briefly here. We
have a model of musical timing for the composite rhythm of
solo and accompaniment parts, that is, the rhythm obtained
by taking all solo and accompaniment onset times and ar-
ranging these in increasing order. The model is expressed
by (

pk+1

sk+1

)
=

(
1 lk
0 1

)(
pk

sk

)
+

(
πk

σk

)
(2)

wherepk is the time of thekth composite event,sk is the cur-
rent tempo in seconds per quarter note, andlk is the length of
thekth composite event in quarter notes, and the{(πk,σk)t}
are independent, zero-mean, Gaussian random vectors.

When a new piano event has been observed, we treat
the corresponding time variable,pk in our model as having
been observed. Then, conditioned on this new information,
we compute the time of the pending accompaniment note.
The accompaniment audio is generated by playing back a
prerecorded audio file at variable rate, using phase-vocoding
[3]. so that we reach the pending accompaniment note at the
estimated time.

4. TRAINING THE MODEL

In our usual accompaniment scenario, the live player may
play through the target piece of music many times before
actually performing it. In many cases, the practice itself
is the main focus, so there may never be a true “perfor-
mance.” Rather the accompaniment system is used as a
practice tool. In either case, we take advantage of the in-
formation contained in past examples to automatically train
our models, thereby adapting to the particular player and
piece and achieving better results.

We perform two different kinds of training. The first is
oriented toward improving the score-following, which views
the timing of the piano part as a sequence of one- or many-
note “chords” whose inter-onset intervals (IOIs) are mod-
eled as independent Gamma random variables. As discussed
above, the Gamma distribution is parameterized in terms of
its mean and variance. When no training data are present,
we compute the each mean IOI from the nominal local tempo
and set the corresponding variance as a deterministic func-
tion of the mean. When training data are present, we com-
pute the empirical mean and variance of each IOI, with a
small bias in these calculations toward the initial values of
these parameters. In either case, we compute the Gamma
parameters from our estimated or hypothesized mean and
variance — that is, we use the “method of moments.” These
estimates are updated after each rehearsal with the system.

Our accompaniment is generated by continually predict-
ing the location of the pending orchestra note, given the
times of the currently-identified piano notes and past orches-
tra notes, and setting the playback rate of our phase-vocoder
to reach the pending accompaniment note at the predicted
time. This prediction changes every time a new piece of
information, such as a piano note detection, is made avail-
able. The accuracy of our predictions is important for creat-
ing a satisfying musical experience, especially in regions in
which the player exercises significant liberty orrubato. We
have found a high degree of commonality in the expressive
timing exhibited by a particular player from performance to
performance, even though the player’s perception may be
otherwise. Thus we can improve the performance of our
system by learning the parameters of the{(πk,σk)t} vari-
ables in the model of Eqn. 2. While these variables are ini-
tialized to have mean 0 with covariance matrix depending
on the nominal length of the IOI, we adjust the mean vec-



tors using maximum likelihood on the past performances.
The computational aspects of this updating are somewhat
involved, but are quite well known in the Bayesian belief
network literature and are discussed in detail in [4] and [?].

5. EXPERIMENTS

Figure 3. Histogram showing latency in note detection for
the piano data before and after training the model.

We currently are performing experiments on the 1st move-
ment of the Rachmaninov 2nd piano concerto. While in
many scenarios MIDI-based score following might be rather
straightforward, this piece poses significant challenges due
to the sheer density of notes and potential for error in the
“input.” We have trained the score following model as dis-
cussed above using 4 rehearsals on complete performances
of the movement. This training is especially useful in a piece
such as the Rachmaninov, sincea priori there is consid-
erable uncertainty about note length making the following
task harder. Training the IOI distributions leads to a more
informed and better-functioning model.

We created ground truth for these 4 performances by
hand-correcting the off-line score matches. This process
found there were a total of 10,564 correctly played (pos-
sibly one-note) simultaneities. We trained and ran our algo-
rithm on these performances using a “leave-one-out” train-
ing scheme and present results of our on-line detection be-
fore/after training, as percentages of the correctly played si-
multaneities. With our currently choice ofτ we get
0.95%/0.30% incorrect detections and 1.62%/0.97% missed
detections, though higher values ofτ will shift notes from
the former to the latter categories . Of the correct detec-
tions, 84.8%/88.7% occur immediately after the first note of
the chord is received, while the latency on the remaining de-
tections is given if Figure 3. The missed notes are contained
in the right edge of the figure.

We also trained our prediction model as discussed above.
Both video and audio of a complete performance of the move-
ment with Yupeng Gu as featured soloist can be accessed at
http://www.music.informatics.indiana.edu/papers/icmc09.

6. FUTURE WORK

We are currently working with piano faculty and students in
the Jacobs School of Music (JSoM) at Indiana University.
The JSoM has many piano students who possess the tech-
nically proficiency and musical maturity to serve as con-
certo soloist. It is unfortunate that most of these students
will not have this experience while at IU, due simply to the
small number of solo opportunities that are available — we
have one student piano soloist perform with orchestra each
semester. We are currently working on a demonstration in
which three students will be featured as piano soloists in a
public concert, accompanied by our program. We look for-
ward to reporting on this event as it develops.

While this effort uses the MIDI data generated by the
Bösendorfer piano, the high performance resolution data also
created by the piano allows for interesting possibilities. This
data includes 2 ms. measurements of key position for each
key, allowing one toanticipatethe strike time of the piano
notes. This information is especially valuable in situations
where the piano note cannot be accurately predicted, such
as a simultaneous entrance of both piano and orchestra. At
present, our system simply waits until the piano has been de-
tected before launching the orchestra, thus guaranteeing the
orchestra will be late. However, we believe the information
will be more generally useful, by offering earlier knowledge
of the performer’s actions.
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