
Determining Context-Defining Windows: Pitch Spelling using the Spiral Array

Elaine Chew∗ and Yun-Ching Chen
Integrated Media Systems Center and D. J. Epstein Dep of Industrial & Systems Engineering

University of Southern California, Los Angeles, California, USA.
[echew,yunchinc]@usc.edu

Abstract

This paper presents algorithms for pitch spelling us-
ing the Spiral Array model. Accurate pitch spelling,
assigning contextually consistent letter names to pitch
numbers (for example, MIDI), is a critical component
of music transcription and analysis systems. The local
context is found to be more important than the global,
but a combination of both achieves the best results.

Keywords: pitch spelling, music analysis, algorithm design.

1 Pitch Spelling

Pitch spelling is a critical first step in any content-based mu-
sic processing system. This paper presents three real-timepitch
spelling algorithms based on context-defining windows. Theal-
gorithms summarize music information in windows of varying
sizes to determining local and long-term tonal contexts using
theSpiral Array model (Chew, 2000). The Spiral Array is a ge-
ometric model for tonality that clusters closely-related pitches
and summarizes note content as spatial points in the interior
of the structure. These interior points, calledcenters of effect,
serve as proxies for the key context in pitch spelling. The ap-
propriate letter name is assigned to each pitch through a nearest
neighbor search in the Spiral Array space.

The problem of pitch spelling is an artefact of equal tempera-
ment tuning in western tonal music− several pitches are ap-
proximated by the same frequency (these pitches are said to
be enharmonically equivalent). In a MIDI file, enharmonically
equivalent pitches are represented by the same numerical value
indicating its frequency and not its letter name. The name of
the pitch determines the notation and serves as a clue to the key
context. The local key context determines the pitch spelling in a

∗Funded in part by the Integrated Media Systems Center, an NSF
ERC, Cooperative Agreement No. EEC-9529152. Any Opinions,find-
ings and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect those of the Na-
tional Science Foundation.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation onthe first
page. c©2003 Johns Hopkins University.

musical excerpt. The problem of pitch spelling is to assign ap-
propriate pitch names that are consistent with the key context.

2 The Algorithms

Each algorithm in this section generates pitch spelling assign-
ments based on tonal contexts of varying ranges. The notes in
each window generate a center of effect (CE) in the Spiral Ar-
ray. Suppose the music is divided into chunks. The CE for
chunksa throughb is given byca,b =

∑b

i=a

∑
j pij .dij/Da,b

where(pij , dij) are the pitch and duration of thej-th note in the
i-th chunk andDa,b =

∑b

i=a

∑
j dij .

We use the evolving CE as a proxy for the key context. A cu-
mulative window generates a CE that represents the long-term
tonal context. A sliding window CE represents the local tonal
context. For theij-th note, suppose thatindexij is the spelling
whose index in the Spiral Array is closest to 0. This choice will
bias the notation towards fewer sharps (])and flats ([). The most
probable pitch name assignments are then given by the triplet:
Iij = {indexij − 12, indexij, indexij + 12}. Of the three
plausible indices, we choose the one corresponding to a pitch
position that is closest to the CE.

2.1 Algorithm 1: Cumulative CE

Our original algorithm (Chew & Chen, 2003) used a cumula-
tive window to summarize the tonal context. The algorithm ad-
vanced one chunk at a time. At timet, we examine and assign
pitch names to the notes in thet-th chunk. The notes in the pre-
vioust− 1 chunks are used to generate a CE:ĉt = c0,t−1. This
method had an error rate of 1/1375 (that is to say, 99.93% cor-
rect) for Beethoven’s Piano Sonata Op.79 Mvt.3 and 73/1516
(95.18% correct) in the more complex Sonata Op.109 Mvt.1.

2.2 Algorithm 2: Sliding Window

We propose a sliding window algorithm that is more sensitive
to changes in local tonal contexts. Figure 1 shows the sliding
window method for a window of size4. For a window of size
w, the CE is defined as:̂ct = ct−w,t−1. The sliding window
method eliminated several of the spelling errors in the original
algorithm. However, it was not able to detect quickly enough
the sudden changes to distant keys in the exposition and the
recapitulation of the Beethoven Op.109 Mvt.1.

2.3 Algorithm 3: Two-phase Assignment Method

We propose another sliding window method where the algo-
rithm is allowed to re-visit previous decisions in a second win-

��
��

���������������������������������������
�

��������������������������
���
�

	
�����������	������

��
��

���������������������������������������
�

��������������������������
���
�

	������

������

������

	
�����������

Figure 1: Sliding Window (w = 4).

��
��

���������������������������������������

!����"��"��"��"��"��"��"��
"��

#$%&%'()%*+,+-#./%00-

��
��

���������������������������������������

!����"��"��"��"��"��"��"��
"��

#./%00-

1)%/+2

1)%/+3

#$%&%'()%*+,+-

#.%0456%57-

#.%0456%57-

Figure 2: Two-phase assignment method (w = 4, wr = 2).

dow. The additional step ensures local consistency in spelling
and heightens the sensitivity to abrupt key changes. Figure2
depicts this new procedure. After assigning pitch names as be-
fore, the two-phase assignment method re-visits the notes in a
second window (denoted by dotted lines) that includes the cur-
rent chunk. Both windows advance simultaneously over time.

Phase 1: The definition of the CE and the first pass at pitch
name assignments proceed as in the previous algorithms.

Phase 2: Let the second local window be of sizewr, call
this the self-referential window. A second CE is generated:
c̃t = f · ct−wr ,t + (1 − f) · c1,t, wheref is the weight of the
local context relative to the global tonal context. Spelling as-
signments in the dotted box are re-visited and re-assigned when
necessary to make them consistent with this second CE.

2.4 Other Algorithms

Prior to the two-phase method described in Section 2.3, we tried
a two-phase method without the cumulative CE. This algorithm
did not take into account the global key context. The result was
that an erroneous spelling upon a return to the original tonal
context can tip the spelling from one with mostly sharps to one
with many flats. The result may be locally consistent, but glob-
ally disastrous. In this case, a small perturbation can set apatho-
logical course for error-filled spelling.

We also tested a dynamic window algorithm inspired by the hy-
pothesis that a growing distance from the closest key portends a
key change and decreasing distance indicates stability. The al-
gorithm can be summarized as follows: when the distance from
the CE to the closest key exceedsfd (some fractionf of the
minimum distance between any two keysd) by a given thresh-

old, w = 1

2
w; when it is less thanfd by the same amount,

w = 2w. Because the Spiral Array is configured in a 3D space,
there is little correlation between the second order effectof Eu-
clidean distance and changing keys. This algorithm was no
more effective than the sliding window algorithm.

3 Results and Conclusions

The algorithms were tested on the first movement of
Beethoven’sPiano Sonata No.30 in E Major, Op.109. This late
Beethoven sonata contains many sudden key changes and poses
a challenge to pitch spelling algorithms. The computational re-
sults are shown in Figure 3. The sliding window algorithm con-
sistently produces better results than the cumulative CE method.
The best results are shown for window size 4, with 31 errors out
of 1516. The two-phase assignment method outperforms the
sliding window algorithm. For window size 4, usingwr = 3
andf = 0.8 or 0.7, we get only 27 errors. The same result
is reported for window size 8, usingwr = 6 and f = 0.9.
For window size 16, the best results (30 errors) are seen when
wr = 6 andf = 0.8.

Method Parameters Errors (1516 notes) % Correct

Cumulative 73 95.18

4 31 98.00

8 47 96.90
Sliding Window

(w)
16 40 97.36

4 2 0.6 28 98.15

4 3 0.8 27 98.22

4 3 0.7 27 98.22

8 2 0.9 31 97.96

8 4 0.9 40 97.36

8 6 0.9 27 98.22

16 4 0.8 40 97.36

16 6 0.8 30 98.02

Two-Phase

(w, wr, f)

16 8 0.9 37 97.56

Figure 3: Computational Results.

We conclude that the local context is more important than the
global context in pitch spelling. However, we achieve the low-
est error rates when we combine both short-term and long-term
tonal contexts. Hence, pitch spelling is a function of both local
and global tonal contexts.

Future work includes developing a database suitable for pitch
spelling benchmark purposes and testing the algorithms against
those by Cambouropoulos (2001) and Meredith (2003).

References

E. Cambouropoulos. Automatic pitch spelling: From numbers
to sharps and flats. InProceedings of the VIII Brazilian sympo-
sium on Computer Music, Fortaleza, Brazil, 2001.

E. Chew. Towards a Mathematical Model of Tonality. PhD
thesis, MIT, Cambridge, MA, 2000.

E. Chew. Modeling tonality: Applications to music cognition.
In The 23rd Annual Meeting of the Cognitive Science Society,
Edinburgh, Scotland, August 2001.

E. Chew and Y.-C. Chen. Mapping MIDI to the Spiral Array:
Disambiguating Pitch Spellings. InThe 8th INFORMS Com-
puter Society Conference (ICS), Chandler, AZ, 2003.

D. Meredith. Pitch spelling algorithms. InProceedings of the
5th Triennial ESCOM Conference, Hanover, Germany, 2003.

