
An Introduction to R

To get R:

1. Download and install R (it’s free) from the website http://cran.r-project.org There are versions for Linux, Windows and
Mac.

2. Extra tutorials for R at http://cran.r-project.org/doc/manuals but start here first.

After you call up the program you will see a window with a “command prompt” which looks like

>

This is where you will type your commands. First try using R as a calculator by typing the following expressions (followed
by a return)

> 5+3 # anything after the ‘‘#’’ is a comment

> 10*10 # ‘‘*’’ is multiplication

> (5+4)/3 # you can use parentheses to ‘‘chain’’ operations together

> 2^3 # 2^3 = 2*2*2

> sqrt(100) # the square root of 100

R has most any mathematical function you can think of such as sqrt(), sin() ... mostly with easily guessable names.
Expressions using the logical operators ==, !=, <, > give Boolean values (T,F)

> 4 > 3 # this evaluates to T (true)

> 4 < 3 # this evaluates to F (false)

> 1 == (4/4) # this evaluates to T

> 1 != (4/4) # this evaluates to F

It is possible to have variables that hold values in your program. Most strings beginning with an alphabetic character will
be treated as variables by R. Try typing the following lines in succession

> x = 3 # the variable x now holds the value of 3

> y = x*x+x # the variable y now holds x*x+x = 12

> y # print the value of y

Vectors

Vectors are collections of numbers rather than single numbers (variables). You can think of a vector as a row of boxes
with each box containing a number. One of the nicest aspects of R is the way it handles vectors. Here are a several ways to
create vectors:

> x = 1:100 # x is now the vector (1,2,...,100)

> y = seq(-1,1,length=100) # y consists of 100 evenly spaced values from -1 to 1

> z = c(1,4,8,20) # z is the vector (1,4,8,20)

If you want to see the inidividual components of a vector use the square braces:

> y[1] # the first component of y (= -1)

> y[20] # the 20th component of y

R can perform operations on entire vectors at once (when they make sense)

> z = 4*x # z is now a vector of the same length as x (100). z[1] = 4*x[1], z[2] = 4*x[2] etc.

> z = x+5 # z is x with 5 added to each component

> a = x+y # vectors of same length can be added: a[1] = x[1]+y[1], a[2] = x[2]+y[2], etc.

> a = x*y # or multiplied, subtracted, or divided

1



Plotting Try the following

> x = seq(0,1,length=100)

> y = x^2 # y = x squared

> plot(x,y) # plot with points (x[1],y[1]) \ldots, (x[100],y[100])

> plot(y) # same as plot(1:length(y),y)

> plot(ht,low_hz) # where ht are heights in inches and low_hz is lowest note in hz

Source Files You will be given assignments to write simple programs in R and this usually requires some trial, error and
iteration. I recommend the following procedure: Create a “source” file in any text editor containing your R commands. This
could be emacs or the Windows “Notepad” or whatever you are comfortable using. Do not use a word processor such as
“Word.” Suppose you create the following file named “myprog.r”in your editor:

x = seq(0,20,length=100)

y = x*sin(x)

title("my function")

print("values are: ")

print(y)

You can now run your program from R simply by using:

> source(‘‘myprog.r’’)

This technique allows you to write a program in the usual incremental way by repeatedly making minor changes to your
file and “sourcing” the file. If you want to get a hard copy of the printout and the plot (for example, to submit as your
homework), do the following

> postscript("myplot.ps") # direct future plots to postscript file ‘‘myplot.ps’’

> sink("myout.txt") # write future text output to ‘‘myout.txt’’

> source("myprog.R") # run the program you created

> dev.off() # redirect plots to screen. Don’t forget this!

> sink() # redirect output to screen. ditto.

Quitting and help

> help("plot") # gives help for the plot function. Of couse this works for other functions.

> q() # to quit the program. Hope you had fun.

2


